• 제목/요약/키워드: embedded foundation

검색결과 242건 처리시간 0.027초

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam;Rabab A. Shanab;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.257-279
    • /
    • 2023
  • This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.

사질토 지반에서 말뚝 캡의 근입에 따른 무리말뚝의 동적거동 (Dynamic Behavior of Group Piles according to Pile Cap Embedded in Sandy Ground)

  • 김성호;안광국;강홍식
    • 한국지반환경공학회 논문집
    • /
    • 제19권10호
    • /
    • pp.35-41
    • /
    • 2018
  • 구조물을 지지하는 말뚝기초에 대한 내진설계 시 안정을 위해 지반-기초-구조물의 동적 상호작용이 반드시 고려되어야 한다. 말뚝기초의 내진설계에 정적 및 반복하중 조건에서 제안된 p-y 곡선이 이용되고 있다. 이 p-y 곡선은 지진과 같은 동하중 조건에서 지반-기초-구조물의 상호작용이 고려되지 않았기 때문에 내진설계에 적용하기 어렵다. 이에 지반-기초-구조물의 동적 상호작용을 고려한 동적 p-y 곡선에 관한 연구가 수행되었으나 공통된 조건으로 말뚝 캡이 지표면 위에 노출되어 있고, 상부구조물은 단순 중량으로 말뚝 캡에 추가하여 동적 p-y 곡선을 확인하였다. 그러나 해양구조물인 경우를 제외한 보편적인 무리말뚝의 경우 지반에 근입하여 시공됨에 따라 말뚝 캡의 근입 여부가 말뚝의 동적 p-y 곡선에 영향을 미칠 것으로 보인다. 이에 본 연구에서는 말뚝 캡의 지반 근입에 따른 무리말뚝의 동적거동을 확인하기 위해 진동대 모형실험을 수행하였다. 그 결과 무리말뚝의 말뚝 캡이 지반에 근입된 경우와 근입되지 않은 경우의 동적거동은 다르게 나타났다.

고장력 볼트 기둥-기초 연결부의 강도특성에 관한 해석적 연구 (An Analytical Study on the Strength Behavior of Column-Foundation Connection with High Tension Bolts)

  • 황동아;황원섭;함준수;정진일
    • 한국강구조학회 논문집
    • /
    • 제28권2호
    • /
    • pp.121-128
    • /
    • 2016
  • 고장력 볼트를 적용한 원형단면 콘크리트 충전 강재 기둥-기초 연결부의 합리적인 설계범위를 제안하기 위하여 축하중과 수평하중을 동시에 받는 기둥-기초 연결부의 전반적인 구조적 거동과 설계변수에 따른 거동특성을 상용 유한요소해석 프로그램인 ABAQUS를 이용하여 해석적으로 검토하였다. 이를 위해 앵커볼트를 고장력 볼트로 대신하는 선행연구의 실험을 토대로 수치해석을 실시하였으며, 해석방법의 타당성을 검증하였다. 또한 현행 설계기준을 분석하여 기둥-기초 연결부 거동에 영향을 미치는 설계변수(앵커의 묻힘깊이, 앵커의 강종, 리브의 높이, 리브의 두께)를 선정하였으며, 설계변수에 따른 기둥-기초 연결부의 거동특성을 비교 분석하였다. 일반 앵커에 비해 고장력 볼트를 적용하는 것이 기둥-기초 연결부의 거동에 유리한 것으로 나타났으며, 고장력 볼트의 최소 묻힘깊이는 기둥 직경(D)을 기준으로 0.5D이상으로 설계하는 것이 합리적이라고 판단된다. 리브의 높이는 0.5D이상, 리브의 두께는 베이스플레이트 두께($t_b$)를 기준으로 $0.4t_b$이상으로 설계하는 것이 합리적이라고 판단된다.

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube

  • Wu, Chih-Ping;Chen, Yan-Hong;Hong, Zong-Li;Lin, Chia-Hao
    • Advances in nano research
    • /
    • 제6권2호
    • /
    • pp.163-182
    • /
    • 2018
  • Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.

탄성매체에 근입된 변단면 말뚝의 진동 특성 (Vibration Characteristics of Tapered Piles Embedded in an Elastic Medium)

  • 오상진;강희종;이재영;박광규;모정만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.832-835
    • /
    • 2005
  • 본 연구는 지반에 근입된 변단면 말뚝의 자유진동에 관한 연구이다. 이 논문에서는 말뚝이 근입된 지반을 Winkler형으로 이상화하여 변단면 말뚝의 자유진동을 지배하는 상미분방정식을 무차원형으로 표현하였으며, 이를 수치해석하여 대상구조의 고유진동수를 산출하였다. 수치해석 예에서는 상단이 자유, 하단이 회전지점과 회전스프링으로 이루어진 말뚝을 대상으로 회전스프링상수, 근입비, 지반계수, 접촉면의 폭비에 따른 고유진동수를 산출하고 그 결과를 고찰하였다.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • 제2권2호
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.279-298
    • /
    • 2018
  • Present investigation deals with the free vibration characteristics of nanoscale-beams resting on elastic Pasternak's foundation based on nonlocal strain-gradient theory and a higher order hyperbolic beam model which captures shear deformation effect without using any shear correction factor. The nanobeam is lying on two-parameters elastic foundation consist of lower spring layers as well as a shear layer. Nonlocal strain gradient theory takes into account two scale parameters for modeling the small size effects of nanostructures more accurately. Hamilton's principal is utilized to derive the governing equations of embedded strain gradient nanobeam and, after that, analytical solutions are provided for simply supported conditions to solve the governing equations. The obtained results are compared with those predicted by the previous articles available in literature. Finally, the impacts of nonlocal parameter, length scale parameter, slenderness ratio, elastic medium, on vibration frequencies of nanosize beams are all evaluated.

Soil -structure interaction analysis of a building frame supported on piled raft

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • 제5권1호
    • /
    • pp.41-58
    • /
    • 2016
  • The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.