Browse > Article
http://dx.doi.org/10.12989/anr.2018.6.2.163

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube  

Wu, Chih-Ping (Department of Civil Engineering, National Cheng Kung University)
Chen, Yan-Hong (Department of Civil Engineering, National Cheng Kung University)
Hong, Zong-Li (Department of Civil Engineering, National Cheng Kung University)
Lin, Chia-Hao (Department of Civil Engineering, National Cheng Kung University)
Publication Information
Advances in nano research / v.6, no.2, 2018 , pp. 163-182 More about this Journal
Abstract
Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.
Keywords
foundations; multi-walled carbon nanotubes; nonlinear vibration; nonlocal Timoshenko beams; Reissner's mixed variational theorem; van der Waals interaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511.   DOI
2 Reissner, E. (1984), "On a certain mixed variational theory and a proposed application", Int. J. Numer. Methods Eng., 20(7), 1366-1368.   DOI
3 Reissner, E. (1986), "On a mixed variational theorem and on a shear deformable plate theory", Int. J. Numer. Methods Eng., 23(2), 193-198.   DOI
4 Ru, C.Q. (2000), "Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube", J. Appl. Phys., 87(10), 7227-7231.   DOI
5 Shakouri, A., Lin, R.M. and Ng, T.Y. (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307.   DOI
6 Sladek, J., Sladek, V., Krahulec, S., Chen, C.S. and Young, D.I. (2015), "Analyses of Circular Magnetoelectroelastic plates with functionally graded material properties", Mech. Adv. Mater. Struct., 22(6), 479-489.   DOI
7 Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64.   DOI
8 Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66.   DOI
9 Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61, 1899-1912.   DOI
10 Ansari, R. and Ramezannezhad, H. (2011), "Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects", Physica E, 43(6), 1171-1178.   DOI
11 Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlin. Sci. Numer. Simul., 17(4), 1965-1979.   DOI
12 Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655.   DOI
13 Behera, L. and Chakraverty, S. (2015), "Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. Appl., 69(12), 1444-1462.   DOI
14 Behera, L. and Chakraverty, S. (2016), "Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review", Arch. Comput. Methods Eng. DOI: 10.1007/s11831-016-9179-y
15 Bianco, A., Kostarelos, K. and Prato, M. (2005), "Applications of carbon nanotubes in drug delivery", Current Opinion Chem. Biology, 9, 674-679.   DOI
16 Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006a), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294(4-5), 1060-1072.   DOI
17 Carrera, E. (2000), "An assessment of mixed and classical theories on global and local responses of multilayered orthotropic plates", Compos. Struct., 50(2), 183-198.   DOI
18 Carrera, E. (2004), "Assessment of theories for free vibration analysis of homogeneous and multilayered plates", Shock Vib., 11(3-4), 261-270.   DOI
19 Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763.   DOI
20 Vinayan, B.P., Nagar, R., Raman, V., Rajalakshmi, N., Dhathathreyan, K.S. and Ramaprabhu, S. (2012), "Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application", J. Mater. Chem., 22, 9949-9956.   DOI
21 Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006b), "Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904-3909.   DOI
22 Wu, C.P. and Lai, W.W. (2015a), "Reissner's mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions", Compos. Struct., 122, 390-404.   DOI
23 Wu, C.P. and Lai, W.W. (2015b), "Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method", Physica E, 68, 8-21.   DOI
24 Wu, C.P. and Lee, C.Y. (2001), "Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness", Int. J. Mech. Sci., 43, 1853-1870.   DOI
25 Wu, C.P. and Tsai, Y.H. (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", Int. J. Eng. Sci., 45(9), 744-769.   DOI
26 Wu, C.P., Hong, Z.L. and Wang, Y.M. (2017), "Geometrically nonlinear static analysis of an embedded multiwalled carbon nanotube and van der Waals interaction", J. Nanomech. Micromech.-ASCE, 7, 04017012 (12 pages).   DOI
27 De Volder, M.F.L., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: present and future commercial applications", Sci., 339, 535-539.   DOI
28 Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D. and Zhang X.B. (2003), "Tribological application of carbon nanotubes in a metal-based composite coating and composites", Carbon, 41, 215-222.   DOI
29 Cowper, G. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340.   DOI
30 Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I. and Galiotis, C. (2008), "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46, 833-840.   DOI
31 Du, H., Lim, M. and Lin, R. (1994), "Application of generalized differential quadrature method to structural problems", Int. J. Numer. Methods Eng., 37(11), 1881-1896.   DOI
32 Ebrahimi, F. and Barati, M.R. (2016a), "Analytical solution for nonlocal buckling characteristics of higherorder inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
33 Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196.   DOI
34 Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169.   DOI
35 Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451 (18 pages).   DOI
36 Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564.   DOI
37 Ebrahimi, F. and Salari, E. (2015a), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50.   DOI
38 Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735.   DOI
39 Yalcin, H.S., Arikoglu, A. and Ozkol, I. (2009), "Free vibration analysis of circular plates by differential transformation method", Appl. Math. Comput., 212, 377-386.
40 Ebrahimi, F. and Salari, E. (2015b), "Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory", J. Mech. Sci. Technol., 29(9), 3797-3803.   DOI
41 Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397.   DOI
42 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128.   DOI
43 Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857.   DOI
44 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215.   DOI
45 Ehteshami, H. and Hajabasi, M.A. (2011), "Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams", Physica E, 44(1), 270-285.   DOI
46 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
47 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
48 Harris, P.J.F. (2009), Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, UK.
49 Fang, B., Zhen, Y.X., Zhang, C.P. and Tang, Y. (2013), "Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory", Appl. Math. Modell., 37(3), 1096-1107.   DOI
50 Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67, 1-28.   DOI
51 He, X.Q., Kitipornchai, S. and Liew, K.M. (2005a), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction", J. Mech. Phys. Solids, 53(2), 303-326.   DOI
52 Hassan, I.H.A.H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127, 1-22.
53 Hassan, I.H.A.H. (2008a), "Application to differential transformation method for solving systems of differential equations", Appl. Math. Modell., 32, 2552-2559.   DOI
54 Hassan, I.H.A.H. (2008b), "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems", Chaos, Solitons Fractals, 36, 53-65.   DOI
55 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248.   DOI
56 He, X.Q., Kitipornchai, S., Wang, C.M. and Liew, K.M. (2005b), "Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells", Int. J. Solids Struct., 42(23), 6032-6047.   DOI
57 Hsiao, K.T., Alms, J. and Advani, S.G. (2003), "Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites", Nanotechnol., 14, 791-793.   DOI
58 Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded doublewalled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417.   DOI
59 Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magnetoelectro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485.   DOI
60 Iijima, S. (1991), "Helica microtubes of graphitic carbon", Nature, 354, 56-58.   DOI
61 Khare, R. and Bose, S. (2005), "Carbon nanotube based composites-A review", J. Miner. Mater. Character. Eng., 4(1), 31-46.   DOI
62 Li, C., Thostenson, E.T. and Chou, T.W. (2008), "Sensors and actuators based on carbon nanotubes and their composites: A review", Compos. Sci. Technol., 68, 1227-1249.   DOI
63 Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339.   DOI
64 Pour, H.R., Vossough, H., Beygipoor, M.M.H.G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073.   DOI
65 Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20.   DOI
66 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307.   DOI
67 Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518.   DOI