• Title/Summary/Keyword: embankment slope

Search Result 171, Processing Time 0.025 seconds

Sensitivity Analysis of Soil Properties for the Slope Safety Factor in Embankments utilized Bottom Ash and Dredged Soil Mixture (바텀 애쉬와 준설 혼합토 적용 제체의 사면 안전율에 대한 토질 정수 민감도 분석)

  • Noh, Soo-Kack;Son, Young-Hwan;Park, Jae-Sung;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.99-109
    • /
    • 2015
  • In the construction industry, the interest for recycling aggregates is rising as more people demand for alternatives due to lack of supply of natural aggregates and environmental problems. However, in order for recycled aggregates to be used in infrastructures, stability and other factors need to be verified. Therefore, the objective of this study is to analyze the sensitivity of soil properties to secure slope safety according to various heights of embankment when bottom ash and dredged soil mixture is applied in the embankment. In most cases, all heights were safe for the slide for the embankment whether the water level is full or sudden draw down. The result of the sensitivity analysis revealed that the unit weight of embankments is highest among all factors to be considered. However, the sensitivity of the unit weight became smaller and the sensitivity of the friction angle of embankments increased with the height of embankments. The sensitivity of factors of core materials is very small because the core has weaker physical properties than those of the embankment. The effect of the height for each factor is different for each slope and water levels. The sensitivity of the unit weight of embankments is most affected when the height is 60m in the upstream slope. To conclude, bottom ash and dredged soil mixture can be applied in the embankment and different factors must be considered in different scale because the sensitivity depends highly on the height of embankments.

Safety Evaluation of Agricultural Reservoirs due to Raising Embankment by Field Monitoring and Numerical Analysis (현장계측과 수치해석에 의한 농업용저수지 제체의 안정성 평가)

  • Lee, Kwang Sol;Lee, Dal Won;Lee, Young Hak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.31-44
    • /
    • 2016
  • This study analyzed pore water pressure, earth pressure and settlement through field monitoring on the project site in which raising embankments are being built through backside extension, and compared the behaviors of seepage analysis, slope stability analysis and stress-strain during flood water levels and rapid drawdown under steady state and transient condition. The variation of pore water pressure showed an increase during the later period in both upstream and downstream slope, with downstream slope more largely increased than upstream slope overall. The variation of earth pressure increased according to the increase of embankment heights, while the change largely showed in the upstream slope, it was slowly increased in the downstream slope. The settlements largely increased until 23 m as embankment heights increased, and showed very little settlement overall. Under a steady state and transient conditions, the seepage quantity per day and leakage quantity per 100 m of embankment against total storage were shown to be stable for piping. The hydraulic gradient at the core before and after raising embankments was greater than the limit hydraulic gradient, showing instability for piping. The safety factor of upstream and downstream slopes were shown to be very large at a steady state, while the upstream slopes greatly decreased at a transit conditions, downstream slopes did not show any significant changes. The horizontal settlements, the maximum shear strain and stress are especially distributed at the connecting portion of the existing reservoir and the new extension of backside. Accordingly, the backside extension method should be designed and reinforced differently from the cases of other types reservoirs.

A Study on the Stability of Embankment Due to the Construction of Embankment Combined Use Road (제방겸용도로 건설에 따른 제방 안정성 해석에 관한 연구)

  • Kim, Sung-Nam;Lee, Young-Woo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.109-118
    • /
    • 2008
  • This study analyzes the change of stability of embankment due to the construction of embankment combined used road with two different construction phases. The stabilities have been checked both in the phase of earth banking for a road construction and in the phase of the application of the traffic roads(DB-24). In both cases the factor of safety has been found higher than 1.3 which is the general criterion of the safety of an embankment. The results indicate that the safety of an embankment due to the construction of embankment combined use road is assured, and thus, it is thought that the construction of embankment combined use road can be considered for cutting down on expenses of construction sites for a road construction. However, the pre-examination of stability due to the construction should be carried out because it decreases the factor of safety of an embankment. From this study, it has been found that the factor of safety was dropped most when the water level rose in the transient flow. The result indicates that the stability analysis of a river embankment where the water level changes frequently should be carried out in the condition of transient flow. It is recommended that the inner side of an embankment should have a slope of 1:2 which is identical with the slope of the existing embankment. In addition, the factor of safety also can be decreased due to the traffic loads, and therefore, the effect should also be considered after the construction of embankment combined used road limiting the traffic loads.

  • PDF

Numerical Study on the Variation of Slope Stability for the Embankment Formed by Unsaturated Dredging Soils during Rainfall (강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구)

  • You, Seung-Kyong;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, the variation of wetting front and ground water level at the embankment constructed in the Saemangeum area were predicted considering rainfall duration times and the slope stability analysis of the embankment was carried out according to prediction results of wetting front and ground water level. The embankment was formed by dredging soils. A suction stress, a cohesion and a frictional angle of dreding soils measured by soil tests were applied to estimate the unsaturated soil properties. According to the analysis results of the wetting front and the ground water level for various rainfall duration time, the wetting front began to descend from the upper part of embankment at the beginning time of rainfall and after 1 hour of rainfall duration time. After that, the ground water level continued to ascend as the rainfall duration time was getting longer. After rainfall, the ground water level was distributed at a certain depth, and the ground water level was gradually descending as time goes by. According to the slope stability analysis of the embankment considering the variation of the wetting front and the ground water level, the safety factor of slope was rapidly reduced as the rainfall began to infiltrate into the ground, and the minimum safety factor of slope was estimated after 24 hours of rainfall duration time. Meanwhile, the safety factor of slope was increased with regaining the matric suction in the ground after rainfall.

Reinforcing effect of vetiver (Vetiveria zizanioides) root in geotechnical structures - experiments and analyses

  • Islam, Mohammad S.;Shahin, Hossain M.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.313-329
    • /
    • 2013
  • Vetiver grass (Vetiveria zizanioides) is being effectively used in many countries to protect embankment and slopes for their characteristics of having long and strong roots. In this paper, in-situ shear tests of the ground with the vetiver roots have been conducted to investigate the stabilization properties corresponding to the embankment slopes. Numerical analyses have also been performed with the finite element method using elastoplastic subloading $t_{ij}$ model, which can simulate typical soil behavior. It is revealed from field tests that the shear strength of vetiver rooted soil matrix is higher than that of the unreinforced soil. The reinforced soil with vetiver root also shows ductile behavior. The numerical analyses capture well the results of the in-situ shear tests. Effectiveness of vetiver root in geotechnical structures-strip foundation and embankment slope has been evaluated by finite element analyses. It is found that the reinforcement with vetiver root enhances the bearing capacities of the grounds and stabilizes the embankment slopes.

Evaluation of Degradation and Safety of Small Agricultural Reservoir (소규모 농업용 저수지의 노후도 및 안전도 평가 -고삼 저수지에 대한 사례 연구-)

  • 장병옥;박영곤;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Ths study was peformed to evaluate the degree of degradation and safety of a small agricultural reservoir, Kosam Reservoir, in Kyungki Province. Evaluation was done by the program developed by the authors. Results of the study are as follows: 1) Although many burrows were found in downstream side of embankment and cracks were found in wall joining spillway, it appeared that degree of degradation of embankment was in good conditions. 2) Compressive strengths of concrete of crest, side channel, chute floor of spillway were in poor condition. But it appeared that overall degree of degradation of structures was in medium condition based on the criteria of the evaluation system 3) From the analysis of slope stability, safety factor of downstream slope was over 3.3 for the worst condition, such as flood and high water level and that of upstream slope was also over 3.6 for rapid drawdown. In case of earthquake, safety factors were over 2.5 for all conditions. Therefore embankment slopes of Kosam Reservoir were very stable for normal and earthquake condition. 4) As upon assumed failure of embankment of Kosam Reservoir, degree of damage was estimated to be very serious because of many loss of life and properties in the downstream area. 5) Overall grade of safety of Kosam Reservoir was in good condition. Therefore safety was considered to be "No problems" at the present time but further degradation may be proceeded partly and continuously as time goes by.e goes by.

  • PDF

A Fundamental Study on Slope Stability Due to Filtering Condition of Embankment Material During Rain (성토재료의 필터링 조건이 사면 안정에 미치는 기초연구)

  • Kim, Sang-Hwan;Kim, Hak-Moon;Shin, Jong-Ho;Ko, Dong-Pil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.419-426
    • /
    • 2008
  • Recently, localized heavy rain due to "EL-LIO" was a kind of reason by risk of slope stability. In this paper, the behaviour of slope when localized heavy rain was studied. In order to perform this study experimental programs were performed. Experimental programs was checked filtering conditions for slope stability due to localized heavy rain. And then, investigated slope stability and fracture mechanism each other types. In the experimental study, performed changing filtering condition by embankment, through five fixing factors such as rainfall intensity, slope shape, geological condition, compaction energy and water content. According to the results of this study, behaviour of facture slope has made a shallow and narrow waterway. This waterway expanded base stone. In order to, suggested a system for slope stability examination.

  • PDF

River Embankment Integrity Evaluation using Numerical Analysis (수치해석을 이용한 하천제방의 건전도 평가)

  • Byun, Yo-Seph;Jung, Hyuk-Sang;Kim, Jin-Man;Choi, Bong-Hyuck;Kim, Kyung-Min;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.524-528
    • /
    • 2009
  • An influence factors for soundness evaluation of river levee include resistibility and embankment for piping of ground consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil, Accordingly, the stability investigation of embankment by application of literature data can affect stability evaluation results by change factors like a permeability coefficient, void ratio. It should be certainly used material properties by a test in soundness evaluation of river levee.

  • PDF

Electrical Resistivity Response Due to the Variation of Embankment Shape and Reservoir Level (제체형태와 수위에 따른 전기비저항 반응 연구)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • The distortion effect of electrical response for two-dimensional (2-D) DC resistivity method was verified in terms of 2-D inversion result of synthetic data obtained by three-dimensional (3-D) modeling, which is frequently applied to assess the safety of center core-type fill dam structure. The distortion effect is due to 2-D interpretation for 3-D structure. By the modeling analysis, we found that the water level is correctly described in the resistivity section around the middle part rather than each end side of the embankment due to the 3-D terrain effect, when the material of the embankment is assumed as horizontally uniform. And when we set the slope of outer rock fill part as uniform. the sharper the slope of the center core is, the more similar the resistivity section reflects. On the other hand, when the slope of the rock fill is steep, the resistivity section shows the water level at lower position than the real one, and the 3-D distortion effect at the end side of the embankment was enhanced.

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF