• Title/Summary/Keyword: elliptic element

Search Result 112, Processing Time 0.021 seconds

SUPERCONVERGENCE AND POSTPROCESSING OF EQUILIBRATED FLUXES FOR QUADRATIC FINITE ELEMENTS

  • KWANG-YEON KIM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.245-271
    • /
    • 2023
  • In this paper we discuss some recovery of H(div)-conforming flux approximations from the equilibrated fluxes of Ainsworth and Oden for quadratic finite element methods of second-order elliptic problems. Combined with the hypercircle method of Prager and Synge, these flux approximations lead to a posteriori error estimators which provide guaranteed upper bounds on the numerical error. Furthermore, we prove some superconvergence results for the flux approximations and asymptotic exactness for the error estimator under proper conditions on the triangulation and the exact solution. The results extend those of the previous paper for linear finite element methods.

7-Pole HTS Bandpass Filter Using New Non-adjacent Coupling of Pseudo-lumped Element Resonators (의사 집중상수 소자 공진기의 새로운 비 인접 결합을 이용한 7-극 고온초전도 마이크로스트립 대역 통과 필터)

  • 전부경;김종헌;이찬주;민병철;최영환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1313-1321
    • /
    • 2000
  • This paper presents a novel HTS microstrip pseudo-lumped element resonator for the compact and simple filter design. A 7-pole bandpass filter with quasi-elliptic response is designed and fabricated using non-adjacent couplings between resonators. A seven-pole quasi-elliptic filter is fabricated using double sided YBCO on a LaAlO$_3$ substrate with thickness of 0.5 mm and dielectric constant of 23.5. The filter has an insertion loss of 0.8 dB at 20K, a bandwidth of 8 MHz at the center frequency of 1774 MHz, and an attenuation of 33 dB for the cut-off-band of 1 MHz.

  • PDF

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

On the $L_2(\Omega)$-error for the p-version under numerical quadrature rules

  • Kim, Ik-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.503-514
    • /
    • 1996
  • We consider non-constant coefficient elliptic equations of the type -div(a \bigtriangledown u) = f$, and employ the P-version of the finite element method as a numerical method for the approximate solutions. To compute the integrals in the variational form of the discrete problem we need the numerical quadrature rule scheme. In practice the integrations are seldom computed exactly. In this paper, we give an $L_2(\Omega)$-error estimate of $\Vert u = \tilde{u}_p \Vert_{0,omega}$ in comparison with $\Vert u = \tilde{u}_p \Vert_{1,omega}$, under numerical quadrature rules which are used for calculating the integrations in each of the stiffness matrix and the load vector.

  • PDF

SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • MOON, MINAM;LIM, YANG HWAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.295-308
    • /
    • 2016
  • We propose a projection-based analysis of a new hybridizable discontinuous Gale-rkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses $L^2$-projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p + 1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.

Large deflection behavior of a flexible circular cantilever arc device subjected to inward or outward polar force

  • Al-Sadder, Samir Z.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.433-447
    • /
    • 2006
  • The problem of very large deflection of a circular cantilever arc device subjected to inward or outward polar force is studied. An exact elliptic integral solution is derived for the two cases and the results are checked using large displacement finite element analysis via the ANSYS package by performing a new novel modeling simulation technique for this problem. Excellent agreements have been obtained between the exact analytical solution and the numerical approach. From this study, a design chart for engineers is developed to predict the required value for the inward polar force for the device to switch on for a given angle forming the circular arc (${\theta}_o$). This study has several interesting applications in mechanical engineering, integrated circuit technology, nanotechnology and especially in microelectromechanical systems (MEMs) such as a MEM circular device switch subjected to attractive or repulsive magnetic forces due to the attachments of two magnetic poles at the fixed and at the free end of the circular cantilever arc switch device.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

Two-Dimensional Thermo-Viscopiastic Finite Element Analysis of Free Forginf for Large Ingot Considerinf Internal Contact Treament on One Deforming Body (변형하는 동일물체간의 접촉처리를 고려한 대형강괴 자유단조의 2차원 열점소성 유한요소해석)

  • 박치용;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.102-108
    • /
    • 1995
  • Internal contact scheme between two free surfaces on one deforming body has been proposed by using the penalty method. It has been imposed to be internal boundary condition on two-dimensional thermo-viscoplastic finite element method so as to analyze one deforming body, which has two free surfaces penetrating each others. Analysis of side pressing with a circular void and a inclined elliptic hole have been carried out in order to verity the proposed contact scheme. A finite element code imposed internal boundary condition has been applied to two-dimensional analysis of free forging of large ingot with a void. Through the analysis, effects of working parameters in order to consolidate voids have been investigated.

  • PDF

ROBUST A POSTERIORI ERROR ESTIMATOR FOR LOWEST-ORDER FINITE ELEMENT METHODS OF INTERFACE PROBLEMS

  • KIM, KWANG-YEON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.137-150
    • /
    • 2016
  • In this paper we analyze an a posteriori error estimator based on flux recovery for lowest-order finite element discretizations of elliptic interface problems. The flux recovery considered here is based on averaging the discrete normal fluxes and/or tangential derivatives at midpoints of edges with weight factors adapted to discontinuous coefficients. It is shown that the error estimator based on this flux recovery is equivalent to the error estimator of Bernardi and $Verf{\ddot{u}}rth$ based on the standard edge residuals uniformly with respect to jumps of the coefficient between subdomains. Moreover, as a byproduct, we obtain slightly modified weight factors in the edge residual estimator which are expected to produce more accurate results.