In this paper, after the crypto acceleration board of the server-termination type is designed, we implement the Elliptic Curve Digital Signature Algorithm on the board that serves data integrity and user authentication. For implementing ECDSA, we use crypto co-processor, MPC180, to reduce the computation burden of main Processor (MPC860) on the board. By using crypto co-processor, the computation efficiency in case prime field is improved more between 90 and 100 times than the software library and between 20 and 90 times in case binary field. Our result is expect to apply for SSL acceleration board.
Journal of information and communication convergence engineering
/
제6권2호
/
pp.177-181
/
2008
The more improved the Internet and the information technology, the stronger cryptographic system is required which can satisfy the information security on the platform of personal hand-held devices or smart card system. This paper introduces a case study of designing an elliptic curve cryptographic processor of a high performance that can be suitably used in a wireless communicating device or in an embedded system. To design an efficient cryptographic system, we first analyzed the operation hierarchy of the elliptic curve cryptographic system and then implemented the system by adopting a serial cell multiplier and modified Euclid divider. Simulation result shows that the system was correctly designed and it can compute thousands of operations per a second. The operating frequency used in simulation is about 66MHz and gate counts are approximately 229,284.
The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field $GF(2^{163})$. And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU(Agent 2000). If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35\;{\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital information home system.
암호화 시스템은 다양한 표준으로 인해 하드웨어 구성에 많은 어려움이 있다. 본 논문에서는 다양한 암호화 규격을 수용할 수 있는 재구성 가능한 타원 곡선 암호화 프로세서 구조를 제안한다. 제안된 프로세서 구조는 32bit 크기의 입출력 포트와 내부 버스를 가지며 유한체 연산 장치(AU), 입력/출력 장치(IOU), 레지스터 파일 그리고 프로그램이 가능한 제어 장치(CU)로 이루어져 있다. 제어 장치의 ROM에 저장되어 있는 마이크로 코드에 의하여 프로세서에서 사용할 키의 길이와 원시 다항식이 결정된다 마이크로 코드는 사용자가 프로세서 내부 ROM에 프로그래밍을 통해 저장할 수 있다. 프로세서 내부의 각 장치는 32 bit 크기의 버스로 연결되어 있어 타원 곡선 암호 규격에 무관하게 동작이 가능하므로 32bit 규격의 입출력 포트만 가지고 있으면 새로운 장치로 교체가 가능한 모듈 구조를 갖고 있다. 따라서 소프트웨어적으로 새로운 마이크로 코드를 프로그래밍하고 하드웨어적으로는 필요한 연산 장치의 교체를 통하여 다양한 타원 곡선 암호 체계에 응용될 수 있다. 본 논문에서는 제안된 프로세서 구조를 이용하여 타원곡선 암호화 프로세서를 구현하였으며 그 결과를 기존의 암호화 프로세서와 비교하였다.
The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field GF($2^{163}$). And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU. If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35 {\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital doorphone.
새로운 공정 기술의 발달로, 임베디드 시스템을 구성하는 하드웨어와 소프트웨어의 복잡도는 나날이 증가하고 있다. 그 결과로, 현대의 복잡한 반도체 디자인을 전통적인 HDL을 사용한 방식으로 수행한다는 일은 점점 어려워지고 있다. 본 고에서는 SystemVerilog를 기반으로 하는 새로운 시스템 수준의 설계 방식을 적용하여 실제 회로에 구현한다. 기존에 구현한 타원곡선 암호화 엔진을 재사용하여, 시스템 레벨에서 객체 지향 개념을 살려 추상화하고, 이를 이용하여 타원곡선 암호화 서버 팜을 구현한다. 전체 시스템을 하나의 통합 설계 환경에서 성공적으로 구현하여 불필요한 노력과 시간을 50%로 축소하였다. 기존 방법으로 했다면, 하드웨어 설계에 Verilog, 시뮬레이션에 C/SystemC를 사용하여 설계와 검증에 여러 단계의 시간과 노력이 필요했을 것이다.
최근 인터넷 및 유무선 통신 인프라가 발전함에 따라, 개인 휴대용 단말기나 스마트 카드 등의 다양한 방면에서 개인 정보보호를 위해 고비도의 암호 시스템이 요구되고 있다. 본 논문에서는 연산력이 떨어지는 무선통신용 단말이나 내장형 시스템에서 고비도의 암호 연산력을 제공할 수 있는 타원곡선형 암호 하드웨어의 설계에 대해 소개한다. 효율적인 암호 연산기를 제작하기 위해 먼저 타원곡선 암호 시스템의 핵심 연산 계층도를 분석 해보고, 직렬 셀 곱셈기와 확장유클리드 알고리즘을 수정하여 유한체 나눗셈기를 적용하여 제작하였다. 제작된 암호 시스템은 시뮬레이션 결과 올바른 동작을 보임을 확인할 수 있었으며, 초당 수천회의 서명이 가능한 수준이었다.
각종 인터넷 보안기술의 기반기술로 작용하는 PKI 기술의 중요성이 강조되고 있는 가운데, PKI의 효율적인 운용을 위해서는 네트워크의 비효율적인 이용, 인증서 폐지 이유 발생 시점과 실제 인증서 폐지 시점의 시간차 발생 등의 문제를 갖고 있는 CRL을 이용하는 기존의 인증서 폐지 메커니즘의 개선이 필요하다. 본 논문에서는 타원곡선 암호체계에서 mECC 기술과 Weil pairing을 이용하여 새로운 방식의 인증서 폐지 메커니즘을 제안한다. 제안하는 인증서 폐지메커니즘은 PKI 시스템 운용에 있어서 전반적으로 성능 향상을 가져올 수 있을 것으로 기대되며, 특히 무선 PKI와 같이 빠를 속도라 효율적인 리소스 활용을 요구하는 환경에 적합하다.
본 논문은 LTE 통신망 환경에서 군집 UAV의 비디오 영상 데이터를 고속으로 암호화하기 위한 하이브리드 암호시스템을 제안한다. 이 암호시스템은 ECC 공개키 알고리즘과 LEA 대칭키 알고리즘으로 구성된다. ECC는 RSA보다 빠르면서 동일한 보안성을 가지며, LEA는 동일한 키로 AES보다 빠른 국내 표준 알고리즘이다. 본 논문은 OpenSSL과 OpenCV를 활용하여 Socket 프로그램으로 8개의 군집 UAV 환경에서 하이브리드 암호시스템을 구성하여 구현하였다. 실험을 통하여 본 하이브리드 암호시스템이 실시간 환경에서 효율적으로 적용이 가능함을 보인다.
모바일 장치와 IoT의 보안 프로토콜 구현에 적합한 경량 보안 SoC 설계에 대해 기술한다. Cortex-M0을 CPU로 사용하는 보안 SoC에는 타원곡선 암호 (elliptic curve cryptography) 코어, SHA3 해시 코어, ARIA-AES 블록 암호 코어 및 무작위 난수 생성기 (TRNG) 코어 등의 하드웨어 크립토 엔진들이 내장되어 있다. 핵심 연산장치인 ECC 코어는 SEC2에 정의된 20개의 소수체와 이진체 타원곡선을 지원하며, 부분곱 생성 및 가산 연산과 모듈러 축약 연산이 서브 파이프라인 방식으로 동작하는 워드 기반 몽고메리 곱셈기를 기반으로 설계되었다. 보안 SoC를 Cyclone-5 FPGA 디바이스에 구현하고 타원곡선 디지털 서명 프로토콜의 H/W-S/W 통합 검증을 하였다. 65-nm CMOS 셀 라이브러리로 합성된 보안 SoC는 193,312 등가 게이트와 84 kbyte의 메모리로 구현되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.