• Title/Summary/Keyword: elliptic Dirichlet boundary value problems

Search Result 5, Processing Time 0.017 seconds

ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

  • Cho, Sungwon
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • We consider the boundary value problem with a Dirichlet condition for a second order linear uniformly elliptic operator in a non-divergence form. We study some properties of a barrier at infinity which was introduced by Meyers and Serrin to investigate a solution in an exterior domains. Also, we construct a modified barrier for more general domain than an exterior domain.

INFINITELY MANY SOLUTIONS FOR (p(x), q(x))-LAPLACIAN-LIKE SYSTEMS

  • Heidari, Samira;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Variational method has played an important role in solving problems of uniqueness and existence of the nonlinear works as well as analysis. It will also be extremely useful for researchers in all branches of natural sciences and engineers working with non-linear equations economy, optimization, game theory and medicine. Recently, the existence of infinitely many weak solutions for some non-local problems of Kirchhoff type with Dirichlet boundary condition are studied [14]. Here, a suitable method is presented to treat the elliptic partial derivative equations, especially (p(x), q(x))-Laplacian-like systems. This kind of equations are used in the study of fluid flow, diffusive transport akin to diffusion, rheology, probability, electrical networks, etc. Here, the existence of infinitely many weak solutions for some boundary value problems involving the (p(x), q(x))-Laplacian-like operators is proved. The method is based on variational methods and critical point theory.

ON SOME UNBOUNDED DOMAINS FOR A MAXIMUM PRINCIPLE

  • CHO, SUNGWON
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In this paper, we study some characterizations of unbounded domains. Among these, so-called G-domain is introduced by Cabre for the Aleksandrov-Bakelman-Pucci maximum principle of second order linear elliptic operator in a non-divergence form. This domain is generalized to wG-domain by Vitolo for the maximum principle of an unbounded domain, which contains G-domain. We study the properties of these domains and compare some other characterizations. We prove that sA-domain is wG-domain, but using the Cantor set, we are able to construct a example which is wG-domain but not sA-domain.

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE QUASILINEAR ELLIPTIC SYSTEMS WITH DIRICHLET BOUNDARY VALUE PROBLEMS

  • CUI, ZHOUJIN;YANG, ZUODONG;ZHANG, RUI
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.163-173
    • /
    • 2010
  • We consider the system $$\{{{-{\Delta}_pu\;=\;{\lambda}f(\upsilon),\;\;\;x\;{\in}\;{\Omega}, \atop -{\Delta}_q{\upsilon}\;=\;{\mu}g(u),\;\;\;x\;{\in}\;{\Omega},} \atop u\;=\;\upsilon\;=\;0,\;\;\;x\;{\in}\;{\partial\Omega},}$$ where ${\Delta}_pu\;=\;div(|{\nabla}_u|^{p-2}{\nabla}_u)$, ${\Delta}_{q{\upsilon}}\;=\;div(|{\nabla}_{\upsilon}|^{q-2}{\nabla}_{\upsilon})$, p, $q\;{\geq}\;2$, $\Omega$ is a ball in $\mathbf{R}^N$ with a smooth boundary $\partial\Omega$, $N\;{\geq}\;1$, $\lambda$, $\mu$ are positive parameters, and f, g are smooth functions that are negative at the origin and f(x) ~ $x^m$ g(x) ~ $x^n$ for x large for some m, $n\;{\geq}\;0$ with mn < (p - 1)(q - 1). We establish the existence and uniqueness of positive radial solutions when the parameters $\lambda$ and $\mu$ are large.