• Title/Summary/Keyword: elevated railway

Search Result 63, Processing Time 0.022 seconds

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway (고가철교 방음터널 효과검증)

  • Kim, Hyung-Doo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

Emergency Evacuation Scenario Study of Urban Metro Vehicle Running on Elevated Guideway (도시철도차량의 고가선로 비상대피 시나리오 분석)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2012
  • There have been recently introduced new types of urban metro vehicles called LRT (Light Rail Transit) running on elevated guideway such as Uijeongbu VAL(which stands for V$\acute{e}$hicule Automatique L$\acute{e}$ger: Automatic Light Rail Vehicle) system, Yong-In LIM(Linear Induction Motor) system, Incheon international airport MAGLEV(Magnetic Levitated Vehicle) system and Daegu monorail system. Most of accidents by the vehicles are bound to happen on elevated guideway. Therefore, it is of vital importance to analyze hazards related to vehicles running on elevated guideway and study emergency evacuation scenarios applicable in case of accidents on elevated guideway so as to secure the safety of the new types of urban metro vehicles. In this study, FTA(Fault Tree Analysis) model was developed to identify all possible hazards, and all possible evacuation scenarios were studied. It was also confirmed that each hazard can be corresponded to one or more evacuation scenarios. This result shows that passengers can be evacuated according to one of the scenarios identified in this study in case of an accident of "Train Stranded on Elevated Guideway".

A Study on the Pediction of Train Noise Propagation From an Elvated Railway (고가선로에서 철도소음 전파예측에 관한 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.289-296
    • /
    • 1998
  • To predict the noise propagation from an elevated railway, sound radiation characteristics of elevated structure are measured by using the sound intensity method. In the base of the results, we propose the source model of elevated structure noise and the calculation model for elevated railway noise. Acoustic model of the former is modeled a row of single sources with directivity cos .theta. positioned in the center of a bogie and arranged in the lower side of slabs. Also prediction model is presented with rolling noise and elevated structure noise calculated by considering the power level of a source for one-third octave band, ground absorption and barrier deflection. Noise level unit patterns of a passing train is calculated based on this model and the results are compared with available field data.

  • PDF

Counter Plan for Reduction of Elevated Railway Bridge Noise (고가교 철도소음 저감을 위한 대책수립)

  • Kim, Byoung-Sam;Lee, Tae-Keun;Han, Sung-Ik;Yeo, Dae-Yeon;Kim, Hyung-Doo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.6-12
    • /
    • 2010
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF

A Study on Field Measurement and Analysis of Train noise at Elevated Railway in Jeolla Line (전라선 고가교 연변 철도 소음 현장측정 및 분석에 관한 연구)

  • Kim, Byoung-Sam;Won, Chan-Hee;Kim, Dae-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.629-634
    • /
    • 2001
  • The construction of the elevated railway has led to concerns about the noise from trains, particularly as tracks often pass close to residential dwellings. One specific issue relates to the noise from trains on bridges. The wayside noise for the train was measured to get the basic data that can be used to prepare count measures for solving environmental noise problems. Noise levels were measured simultaneously at three points in various distances from the railroad and at four points classified by floor. In this paper we measure the wayside noise in elevated railway and noise of normal operation compare with operating under train engine idling condition and investigate effect of nearby-building induced by train operation.

  • PDF

A Study on the Noise Prediction of Railway passing through elevated concrete bridege (철도통과 구조에 따른 철도 연변 소음 예측에 관한 연구)

  • Cho, Jun-Ho;Lee, Duck-Hee;Jung, Woo-Sung;Shin, Min-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1367-1372
    • /
    • 2000
  • Recently, many new constructuion and large scale modification of railway are performed for cost down of goods delivery charge and effective transportation in various aspect. Although railway traffic is environmentally frendly in many part but weak in noise and vibration problem. For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisted. In domestic and abroad many studies for prediction of railway nearby noise are done. In this study simple modelling technique is investigated for railway noise prediction when railway passes above elevated concrete bridge as well as ground. Predicted results are compared with measured results and it is known that suggested modelling technique can be used for more precise prediction of railway nearby noise.

  • PDF

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway in Cholla Line (전라선 고가교 방음터널 효과검증)

  • Kim, Byoung-Sam;Lee, Tae-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.667-672
    • /
    • 2007
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF

Measuring the vibration and Vibration control of Railway Bridge (철도교량의 진동측정 및 방진대책)

  • 엄기영;정흥채;한성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • There are many reasons for occurring vibration when trains run on the railway, but the typical vibration are occurring when the trains run on the elevated Railway bridge. For the settlement of the problems form the vibration, it must be performed to analyze the effect of the vibration to human bodies and adjacent area. and to establish the countermeasures. In this paper, we analyzed the effects of the vibration to the bridge itself and to adjacent structures by measuring the vibration of Yong-Dang Elevated Railway Bridge on Jeolla Line and adjacent area.

  • PDF

A Field-test Study of the Design Standards of Elevated Structures for Rubber-wheeled Light Rail Transit: Braking Force (고무차륜형 경전철 고가구조물 설계기준에 관한 현장 계측 시험 연구(1): 제동하중)

  • Shin, Jeong-Ryol;Lee, An-Ho;Park, Jae-Im;Shin, In-Jo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Due to the absence of design guidelines for elevated light-rail structures in Korea, most elevated light-rail structures have been designed and constructed based on the design codes of conventional railway bridges and on the codes recommended by foreign vehicle manufacturers. This is the main reason why most elevated light-rail structures are massive or over-designed or poorly constructed economically. In this paper, the authors carried out field tests to analyze the braking forces caused by braking a train running at speeds of 50km/h, 60km/h, and 70km/h, acting on the elevated structures of rubber-wheeled Light Rail Transit (LRT) trains. The authors also briefly describe the analyzed results of the braking force acting on the substructures of elevated light-rail structures. The test-results presented here in this paper can be referenced when establishing design guidelines or standards for elevated structures of LRT systems.

The Reduction of Structure-borne Noise in an Elevated Station(Changdong Station) of Seoul Metro Line No. $1\sim4$ (서울메트로 $1\sim4$호선 고가역(창동역) 고체소음 저감 사례)

  • Kong, Sun-Yong;Oh, Hee-Wan;Kim, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.438-443
    • /
    • 2007
  • In the recent railway construction, the concrete slab track is highlighted as the maintenance-free track and the main stream is moving from ballasted track to concrete slab track. However, in spite of many merits of concrete slab track, the higher noise generated from the concrete slab track is a troublesome question to solve and, by this reason, many studies on noise reduction of concrete slab track are carried out. The railway noise can be classified into the reflection noise emitted from wheel/rail contact and the structure-borne noise transmitted through railway structures. In this presentation, we would like to introduce an example of the successful reduction of structure-borne noise at track retrofitting to maintenance-free concrete slab track in elevated Changdong Station which was built with ballasted track on Rahmen structure.

  • PDF