• 제목/요약/키워드: elevated buildings

검색결과 54건 처리시간 0.024초

A study of aerodynamic pressures on elevated houses

  • Abdelfatah, Nourhan;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.335-350
    • /
    • 2020
  • In coastal residential communities, especially along the coastline, flooding is a frequent natural hazard that impacts the area. To reduce the adverse effects of flooding, it is recommended to elevate coastal buildings to a certain safe level. However, post storm damage assessment has revealed severe damages sustained by elevated buildings' components such as roofs, walls, and floors. By elevating a structure and creating air gap underneath the floor, the wind velocity increases and the aerodynamics change. This results in varying wind loading and pressure distribution that are different from their slab on grade counterparts. To fill the current knowledge gap, a large-scale aerodynamic wind testing was conducted at the Wall of Wind experimental facility to evaluate the wind pressure distribution over the surfaces of a low-rise gable roof single-story elevated house. The study considered three different stilt heights. This paper presents the observed changes in local and area averaged peak pressure coefficients for the building surfaces of the studied cases. The aerodynamics of the elevated structures are explained. Comparisons are done with ASCE 7-16 and AS/NZS 1170.2 wind loading standards. For the floor surface, the study suggests a wind pressure zoning and pressure coefficients for each stilt height.

CFD analysis of ventilation efficiency around an elevated highway using visitation frequency and purging flow rate

  • Huang, Hong;Kato, Shinsuke;Ooka, Ryozo;Jiang, Taifeng
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.297-313
    • /
    • 2006
  • The concentration of air pollution along roads is higher than the surrounding area because ventilation efficiency has decreased due to the high-density use of space along roads in recent years. In this study, ventilation efficiency around a heavily traffic road covered by an elevated highway and hemmed in along its side by buildings is evaluated using Visitation Frequency (VF, the frequency for pollutant to return to the objective domain) and Purging Flow Rate (PFR, the air flow rate for defining the local domain-averaged concentration). These are analyzed using Computational Fluid Dynamics (CFD) based on the standard $k-{\varepsilon}$ model. The VF and PFR characteristics of four objective domains are analyzed in terms of the changes in wind direction and arrangements of the fencing dividing up and down direction in the road center under the elevated highway. The resulting VFs are more than 1.0 for all cases, which means that pollutants return to the objective domain restricted by the elevated highway and side buildings. The influence of the arrangement of the buildings around the objective domain and the structure in the domain on the VF is substantial. In cases where there are no obstacles under the elevated highway, the local air exchange rate in the domain tends to be improved. Using these indices, the urban ventilation efficiencies between different urban areas can be compared easily.

Air Pollutant Dispersion Phenomena at a Street under a Sky Train Station in Bangkok, Thailand

  • Hiyama, Kyosuke;Hoshiko, Tomomi;Prueksasit, Tassanee;Kato, Shinsuke;Koganei, Makoto
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.115-121
    • /
    • 2013
  • The ventilation performance of a street in Bangkok, Thailand, was investigated by performing measurements and conducting a CFD analysis. We focused on a street that was covered by an elevated train station. It was shown that the ventilation efficiency varied drastically depending on the angle between the street and the wind direction. When the wind direction was parallel to the street, the elevated structure had a negative influence, which created higher pollutant concentrations than in locations without elevated structures. However, when the wind direction was perpendicular to the street, the pollutant concentrations in the two situations were similar. Using a CFD analysis and ventilation performance indexes, it was shown that the elevated structure directed the wind flow and enhanced the ventilation efficiency, which positively affected ventilation performance. These kinds of knowledge can lead us to optimize city planning including high-rise buildings with high ventilation efficiency.

서울·대구 ASOS 지점에서 건물에 의한 일조 차단 영향 (Blocking Effects of Buildings on Sunshine Duration at Seoul and Daegu ASOSs)

  • 박수진;김재진
    • 대기
    • /
    • 제24권1호
    • /
    • pp.17-27
    • /
    • 2014
  • In this study, the observational environment for sunshine duration at Seoul and Daegu Automated Synoptic Observing Systems (ASOSs) was analyzed using a numerical model. In order to analyze the effects of topography and buildings on observational environment for sunshine duration, the model domains including the elevated building and mountainous areas around Seoul and Daegu ASOSs were considered. Three dimensional topography and buildings used as input data for the numerical model were constructed using a geographic information system (GIS) data. Solar azimuth and altitude angles calculated for the analysis period (one-week for each season in 2008) in this study were validated against those by Korea Astronomy and Space Science Institute (KASI). The starting and ending times of sunshine duration observed at ASOSs largely differed from the respective sunrise and sunset times simply calculated using solar angles and information of ASOSs' latitude and longitude, because uneven topography and elevated buildings around ASOSs cut off sunshine duration right after the sunrise and right before the sunset. The model produced the sunshine indices for Seoul and Daegu ASOSs with the time interval of one minute and the period of one week for each season and we compared the hourly averaged indices with those observed at the ASOSs. One week of which the cloudiness is lowest for each season is selected for analysis. Not only the adjacent buildings but also distant buildings and mountain cut off sunshine duration right after the sunrise and right before the sunset. The buildings and topography cutting off sunshine duration were found for each analyzing date. It was suggested that, in order to evaluate the observational environment for sunshine duration, we need to consider even the information of topography and/or building far away from ASOSs. This study also showed that the analyzing method considering the GIS data is very useful for evaluation of observational environment for sunshine duration.

Structural Performance of Reinforced Concrete Flat Plate Buildings Subjected to Fire

  • George, Sara J.;Tian, Ying
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.111-121
    • /
    • 2012
  • The research presented in this paper analytically examines the fire performance of flat plate buildings. The modeling parameters for the mechanical and thermal properties of materials are calibrated from relevant test data to minimize the uncertainties involved in analysis. The calibrated models are then adopted to perform a nonlinear finite element simulation on a flat plate building subjected to fire. The analysis examines the characteristics of slab deflection, in-plane deformation, membrane force, bending moment redistribution, and slab rotational deformation near the supporting columns. The numerical simulation enables the understanding of structural performance of flat plate under elevated temperature and, more importantly, identifies the high risk of punching failure at slab-column connections that may trigger large-scale failure in flat plate structures.

Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete

  • Yaragal, Subhash C.;Ramanjaneyulu, S.
    • Advances in materials Research
    • /
    • 제5권1호
    • /
    • pp.21-34
    • /
    • 2016
  • Fire is one of the most destructive powers to which a building structure can be subjected, often exposing concrete elements to elevated temperatures. The relative properties of concrete after such an exposure are of significant importance in terms of the serviceability of buildings. Unraveling the heating history of concrete and different cooling regimes is important for forensic research or to determine whether a fire-exposed concrete structure and its components are still structurally sound or not. Assessment of fire-damaged concrete structures usually starts with visual observation of colour change, cracking and spalling. Thus, it is important to know the effect of elevated temperatures on strength retention properties of concrete. This study reports the effect of elevated temperature on the mechanical properties of the concrete specimen with polypropylene fibres and cooled differently under various regimes. In the heating cycle, the specimen were subjected to elevated temperatures ranging from $200^{\circ}C$ to $800^{\circ}C$, in steps of $200^{\circ}C$ with a retention period of 1 hour. Then they were cooled to room temperature differently. The cooling regimes studied include, furnace cooling, air cooling and sudden cooling. After exposure to elevated temperatures and cooled differently, the weight loss, residual compressive and split tensile strengths retention characteristics were studied. Test results indicated that weight and both compressive and tensile strengths significantly reduce, with an increase in temperature and are strongly dependent on cooling regimes adopted.

Compressive Behaviour of Geopolymer Concrete-Filled Steel Columns at Ambient and Elevated Temperatures

  • Tao, Zhong;Cao, Yi-Fang;Pan, Zhu;Hassan, Md Kamrul
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.327-342
    • /
    • 2018
  • Geopolymer concrete (GPC), which is recognised as an environmentally friendly alternative to ordinary Portland cement (OPC) concrete, has been reported to possess high fire resistance. However, very limited research has been conducted to investigate the behaviour of geopolymer concrete-filled steel tubular (GCFST) columns at either ambient or elevated temperatures. This paper presents the compressive test results of a total of 15 circular concrete-filled steel tubular (CFST) stub columns, including 5 specimens tested at room temperature, 5 specimens tested at elevated temperatures and the remaining 5 specimens tested for residual strength after exposure to elevated temperatures. The main variables in the test program include: (a) concrete type; (b) concrete strength; and (c) curing condition of geopolymer concrete. The test results demonstrate that GCFST columns have similar ambient temperature behaviour compared with the conventional CFST counterparts. However, GCFST columns exhibit better fire resistance than the conventional CFST columns. Meanwhile, it is found that the GCFST column made with heat cured GPC has lower strength loss than other columns after exposure to elevated temperatures. The research results highlight the possibility of using geopolymer concrete to improve the fire resistance of CFST columns.

Cities in the Sky: Elevating Singapore's Urban Spaces

  • Samant, Swinal
    • 국제초고층학회논문집
    • /
    • 제8권2호
    • /
    • pp.137-154
    • /
    • 2019
  • Singapore has seen a phenomenal and an unprecedented transformation from a swampland to a high density urban environment since its independence in 1965, made possible largely and single-handedly by the sustained efforts of its government. Indeed, urban space is a key vehicle for achieving urban social, environmental, economic, and cultural sustainability. The dense urban context in Singapore has seen an emergence and increase in elevated spaces in the form of sky-gardens, sky-bridges and sky-courts in a range of building types, seemingly seeking to tie together the different horizontal and vertical components of the city. This paper, therefore, examines the effectiveness of elevated urban spaces and pedestrian networks in Singapore and their ability to contribute to the horizontal to vertical transitions, and consequently to the urban vitality and accessibility. It does this through the analysis of two key developments: Marina Bay Sands and the Jurong Gateway. In particular, it considers the implications of certain constraints placed on urban spaces by their inherent location at height, in addition to the familiar privatization of public spaces, over-management of spaces, and their somewhat utilitarian characteristics. The paper argues that some of these issues may pose detrimental effects on the publicness of these spaces that in turn may lead to such spaces being underused and therefore adding redundancies and further stress to Singapore's urban land. Finally, the paper outlines key strategies that may help overcome the aforementioned issues, including the disjuncture associated with elevated spaces such that they may become a seamless extension of the urban spaces on ground.

남극환경을 위한 고상식 건물의 Design Guideline에 관한 연구(I)-풍하중 (Design Guidelines of Elevated Buildings for Antarctic Environment (I)-Wind Load)

  • 김동혁
    • 한국해양공학회지
    • /
    • 제4권2호
    • /
    • pp.22-34
    • /
    • 1990
  • 남극환경은 남극의 거센 바람 및 이에 수반되는 적설현상을 피하기 위해 땅에서 띄우는 고상식 및 지하에 설치하는, 두가지의 형태를 취하고 있다. 고상식의 경우 건물밑으로 바람을 통하게 함으로써 적설현상을 피하는데 효과적이기는 하나 남극의 거센 바람에 대응하기 위하여 구조적인 문제를 해결해야 하는 취약점을 지니고 있다. 본 연구는 경계층난류풍하를 이용하여 고상식 남극건물에 가해지는 풍하중을 파악함으로서 남극건물의 design guide line을 제시하였다.

  • PDF