• Title/Summary/Keyword: elementary mathematics gifted

Search Result 178, Processing Time 0.022 seconds

Comparative Study between Gifted Math Elementary Students and Non-Gifted Students in Emotional Intelligence and Creative Nature (초등수학영재와 일반학생의 정서지능과 창의적 성향 비교)

  • Lee, Eun Hee;Ryu, Sung Rim
    • School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.181-199
    • /
    • 2014
  • This study set out to analyze and compare gifted elementary students and non-gifted students in emotional intelligence and creative nature. To understand the characteristics of the former, and provide assistance for career education for both groups. For this purpose, the three following research questions were set: First, what kind of difference is there in emotional intelligence between gifted elementary students and non-gifted students? Second, what kind of difference is there in creative nature between gifted elementary students and non-gifted students? Third, what is the connection between emotional intelligence and creative nature in gifted elementary students and non-gifted students? For this study, 102 students from the gifted class and 132 students from non-gifted classes were selected. In total 234 questionnaires were distributed, and the results were analyzed. The results of this study were as follows. First, as a result of the independent sample T-test, there were noticeable differences in giftedness. Gifted students scored significantly higher than non-gifted students in creative nature. Second, as a result of the independent sample T-test, there were noticeable differences in the creative nature of gifted and non-gifted students. Gifted students scored significantly higher than non-gifted students in creative nature. Third, by analyzing the results found for emotional intelligence and creative nature with Pearson's product-moment correlation, there was a positive correlation between both emotional intelligence and creative nature in both groups of results.

  • PDF

A Study on the Development of the Selective Test Item for the Gifted of Elementary Information Science (초등정보과학영재 선발을 위한 평가문항의 개발에 관한 연구)

  • Lee, Jae-Ho;Lee, Jae-Su
    • Journal of Gifted/Talented Education
    • /
    • v.16 no.1
    • /
    • pp.81-100
    • /
    • 2006
  • In this paper, it conducted the following works to develop the selective test for the gifted of information science in elementary schools. First, it presented the discrete mathematical thinking as an essential competence of elementary information science gifted, through theoretical research with many expert's studies, in order to investigate the definition and characteristics of information science gifted. Second, it developed a test to measure the discrete mathematical thinking, according to the results of analysis of discrete mathematical elements, appeared in the 7th national mathematics curriculum, in order to extract the characteristics of selective test for elementary information science gifted. Third, regarding the verification of items in a newly developed test, it adjusted the difficulty and discrimination by conducting 2 sessions of preliminary test, and then finally confirmed that the standards of items in the test, by testifying sufficient level of validity after the application to a main experiment.

A study on the effectiveness of the mathmatically gifted program (초등학교 영재를 위한 수학 프로그램의 실효성에 관한 연구 - Parallel Curriculum Model을 중심으로 -)

  • Whang, Woo-Hyung;Yoon, Na-Rea
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.53-72
    • /
    • 2009
  • The purpose of the study was to develop a program based on PCM(Parallel Curriculum Model) model for the gifted students, and investigate the effectiveness of the program with qualitative research methods. This program was designed to encourage the gifted students to explore mathematics that is closely related to the real world. The results of the study revealed that the program based on the PCM model had positive effect on the gifted students emotionally and cognitively. In conclusion, PCM program is considered an appropriate program for the gifted students of elementary school.

  • PDF

A Study on the Representation of Elementary Mathematics Learning (초등수학 학습에 있어서 표상에 관한 고찰)

  • 최창우
    • Education of Primary School Mathematics
    • /
    • v.8 no.1
    • /
    • pp.23-32
    • /
    • 2004
  • It is not too much to say that problem solving is still the focus of school mathematics though the trend of mathematics education for ten year from the one of 1980 is problem solving and the one of mathematics education for ten year from the one of 1990 is standards and constructivism. There are so many crucial clues or methods in good problem solving but I think that one of them is a representation. So, the purpose of this study is to investigate what is the meaning of representation in general and why representation is so important in elementary mathematics learning, Moreover, I have analyzed the gifted children's thinking of representation which is appeared in the previous internet home task of 40 gifted children who are selected through the examination of 1st, 2nd with paper and pencil and 3rd with practical skill and interview and finally I have presented some examples of children's representation how they use representation to model, investigate and understand special concept more easily in elementary school mathematics class.

  • PDF

A Comparative Study on Affective Characteristics of Mathematically Gifted Children and Average Students (초등학교 수학 영재 및 일반 아동의 정의적 특성 비교 연구)

  • 강신포;김판수;유화전
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.441-457
    • /
    • 2003
  • The purpose of this paper is to compare affective characteristics of mathematically gifted children and average students, by analying self-tests of self-efficacy and attitudes about mathematics. we survey 109 children from Mathematically Gifted Education Institutes located in Busan, and students from 6 elementary schools, each two graded A, B, and C, where schools graded A and B refer to so-called schools with concurrent and general classes and C schools with, semi-special and special classes ones. Those schools are determined through the consideration of geographical, cultural, and environmental conditions of 48 elementary schools under Seobu Educational Office, Busan Metropolitan City. From each of the six schools, a 5th-grade class is selected. That is, 205 students from 6 classes are finally selected. Results of the study can be described as follows. First, mathematically gifted children score higher on whole attitudes about mathematics and interest, preference, and confidence in each subarea than children from schools whose location is classified as A, B, and C. Irrespective of genders, mathematically gifted children are scored higher in the whole attitudes about mathematics than children from schools classified as A, B, and C. Second, mathematically gifted children are higher in score for self-efficacy than children from schools graded A, B, and C. Regardless of gender, mathematically gifted children are scored higher in self-efficacy than other groups of children. But mathematically gifted children's score is not significantly higher than that of children form schools graded A.

  • PDF

The Relationship between Family System and Career Attitude Maturity of Mathematically Gifted and Non-Gifted Elementary Students (초등수학영재와 일반학생의 가족체계와 진로태도성숙에 대한 관계 분석)

  • Jang, Kyung Ja;Choi, Jae Ho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2013
  • The object of this study is to compare and analyze mathematically gifted and non-gifted elementary students in the family system and career attitude maturity, understand the characteristics of the former, and provide assistance for career education for both groups. The subjects include 145 mathematically gifted elementary students (73 fifth graders, 72 sixth graders) and 167 non-gifted students (78 fifth graders, 89 sixth graders) in G educational agencies. Materials for the experiment include amended family system test and career attitude maturity test. While t-test was conducted to solve the first research question, Pearson's correlation analysis was performed to solve the other one. The research findings were as follows: First, mathematically gifted elementary students, compared to non-gifted students, turned out to have higher rates of the family system and career attitude maturity rate and showed statistically meaningful positive relationship. Second, the lower components of the family system and career attitude maturity, there seems to be no relationship between family-flexibility and finality. However, among other components, there was a level of significance at 5% which shows statistically meaningful positive relationship. In summary, this found that the family system is able to have an effect on the career attitude maturity for both mathematically gifted elementary students and non-gifted students. Hence, it need to be considered the components of family system when the teacher guides mathematically gifted elementary students and non-gifted students associated with their career.

  • PDF

A Questioning Role of Teachers to Formal Justification Process in Generalization of a Pattern Task for the Elementary Gifted Class (초등학교 영재학급 학생들의 형식적 정당화를 돕기 위한 교사 발문의 역할)

  • Oh, Se-Youn;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Mathematical formal justification may be seen as a bridge towards the proof. By requiring the mathematically gifted students to prove the generalized patterned task rather than the implementation of deductive justification, may present challenges for the students. So the research questions are as follow: (1) What are the difficulties the mathematically gifted elementary students may encounter when formal justification were to be shifted into a generalized form from the given patterned challenges? (2) How should the teacher guide the mathematically gifted elementary students' process of transition to formal justification? The conclusions are as follow: (1) In order to implement a formal justification, the recognition of and attitude to justifying took an imperative role. (2) The students will be able to recall previously learned deductive experiment and the procedural steps of that experiment, if the mathematically gifted students possess adequate amount of attitude previously mentioned as the 'mathematical attitude to justify'. In addition, we developed the process of questioning to guide the elementary gifted students to formal justification.

A Study on Investigating and Analyzing the Mathematical Problems Posed by the Mathematically Gifted 5th Grade Students in Elementary School (초등 5학년 수학영재 학생이 만든 수학문제에 관한 조사.분석)

  • Lim, Mun-Kyu
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.701-721
    • /
    • 2013
  • In this study, I set the 5th grade children mathematically gifted in elementary school to pose freely the creative and difficult mathematical problems by using their knowledges and experiences they have learned till now. I wanted to find out that the math brains in elementary school 5th grade could posed mathematical problems to a certain levels and by the various and divergent thinking activities. Analyzing the mathematical problems of the mathematically gifted 5th grade children posed, I found out the math brains in 5th grade can create various and refined problems mathematically and also they did effort to make the mathematically good problems for various regions in curriculum. As these results, I could conclude that they have had the various and divergent thinking activities in posing those problems. It is a large goal for the children to bring up the creativities by the learning mathematics in the 2009 refined elementary mathematics curriculum. I emphasize that it is very important to learn and teach the mathematical problem posing to rear the various and divergent thinking powers in the school mathematics.

  • PDF

A Study on the Process of Teaching.Learning Materials Development According to the Level in the Figurate Number Tasks for Elementary Math Gifted Students (초등 수학 영재를 위한 도형수 과제의 수준별 교수.학습 자료 개발 절차와 방법에 관한 연)

  • Kim, Yang-Gwon;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.745-768
    • /
    • 2010
  • The purpose of this study at gifted students' solving ability of the given study task by using all knowledge and tools which encompass mathematical contents and curriculums, and developing the teaching learning materials of gifted students in accordance with their level which tan enhance their mathematical thinking ability and develop creative idea. With these considerations in mind, this paper sought for the standard and procedures of teaching learning materials development according to the levels for the education of the mathematically gifted students. presented the procedure model of material development, produced teaching learning methods according to levels in the task of figurate number, and developed prototypes and examples of teaching learning materials for the mathematically gifted students. Based on the prototype of teaching learning materials for the gifted students in mathematics in accordance with their level, this research developed the materials for students and materials for teachers, and performed the modification and complement of material through the field application and verification. It confirmed various solving processes and mathematical thinking levels by analyzing the figurate number tasks. This result will contribute to solving the study task by using all knowledge and tools of mathematical contents and curriculums that encompass various mathematically gifted students, and provide the direction of the learning contents and teaching learning materials which can promote the development of mathematically gifted students.

  • PDF

Elementary Gifted Students' Creative Problem Solving Through Fermi Estimate (초등 영재의 페르미 추정을 통한 창의적 문제해결력 분석)

  • Heo, Jung-In;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • This study explored the characteristics of elementary gifted students' creative problem-solving skills combining creativity and problem-solving ability based on their work on Fermi estimation problems. The analysis revealed that gifted students exhibited strong logical validity and breadth but showed some weaknesses in divergent thinking abilities (fluency, flexibility, originality).