• Title/Summary/Keyword: element test simulation

Search Result 778, Processing Time 0.024 seconds

An Analysis of Axial Crushing Behavior of Energy Absorbing Aluminum Honeycomb and Design of Cell Configuration (에너지 흡수용 알루미늄 허니컴 재료의 압축거동 분석 및 설계)

  • 김중재;김상범;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.195-205
    • /
    • 2001
  • The mechanical properties of aluminum honeycomb on the direction of axial crushing under quasistatic loading test was investigated. The crushing process was simulated numerically by full-scale finite element models. Simulations reproduce the experimental results both qualitatively as well as quantitatively. From the investigation, we suggested the constitutive model of energy absorbing honeycomb structure for large scale impact analysis. Real impact test of the WB(Moving Deformable Barrier) was carried and compared with finite element simulation. Constitutive model used in the numerical simulation had a good correlation with experiment. By suggesting the optimizing method fur honeycomb cell configuration design, relationship between cell configuration and crush strength is studied.

  • PDF

Equivalent material properties of perforated metamaterials based on relative density concept

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.685-690
    • /
    • 2022
  • In this paper, the equivalent material properties of cellular metamaterials with different types of perforations have been presented using finite element (FE) simulation of tensile test in Abaqus commercial software. To this end, a Representative Volume Element (RVE) has been considered for each type of cellular metamaterial with regular array of circular, square, oval and rectangular perforations. Furthermore, both straight and perpendicular patterns of oval and rectangular perforations have been studied. By applying Periodic Boundary conditions (PBC) on the RVE, the actual behavior of cellular material under uniaxial tension has been simulated. Finally, the effective Young's modulus, Poisson's ratio and mass density of various metamaterials have been presented as functions of relative density of the RVE

The unsymmetric finite element formulation and variational incorrectness

  • Prathap, G.;Manju, S.;Senthilkumar, V.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The unsymmetric finite element formulation has been proposed recently to improve predictions from distorted finite elements. Studies have also shown that this special formulation using parametric functions for the test functions and metric functions for the trial functions works surprisingly well because the former satisfy the continuity conditions while the latter ensure that the stress representation during finite element computation can retrieve in a best-fit manner, the actual variation of stress in the metric space. However, a question that remained was whether the unsymmetric formulation was variationally correct. Here we determine that it is not, using the simplest possible element to amplify the principles.

Investigation of Strain Behaviour around the Tip of Model Pile - Comparison between Laboratory Model Test and Numerical Analysis - (모형말뚝 선단부 주변의 변형률 거동 분석 - 실내모형실험과 수치해석 비교 -)

  • Lee, Yong Joo;Lee, Jung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.159-167
    • /
    • 2012
  • In this study, laboratory model pile-load test and finite element analysis were carried out to compare and analyze the strain behaviour around the model pile tip. In order to simulate the pile load, both the LCM(load control method)and DCM(displacement control method) were introduced to determine which one is appropriate for the FE simulation. In contrast to the previous simulation method, two interface elements around the model pile were used to consider the slip effect in the finite element analysis and its results were compared to the model test. Through this study it was found that the degree of non-associated flow was a dominant factor in terms of numerical solution convergence. In addition, an improved FE mesh was required to obtain the symmetric distribution of the maximum shear strain contour.

Friction Characteristics on the Sheet Metal Blanking of Leadframe (리드 프레임 블랭킹 공정의 마찰특성에 관한 연구)

  • Ko, D.C.;Kim, D.H.;Kim, M.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.428-435
    • /
    • 2006
  • IC leadframe needs precision shape for good efficiency. Friction conditions also have a significant impact on blanking deformation. Therefore, studying the friction produced by the tribology between die and materials becomes necessary. In this study, in order to measure mechanical properties and frictions for leadframe materials such as Ni alloys and coppers, tensile test and straight pulling friction test are executed. In particular, the effect of clearance on the blanking characteristics depending on friction coefficient is examined by finite element simulation. From the finite element simulation, the metal flow, side pressure of punch and crack initiation are evaluated according to the leadframe materials.

A Study on the Local Buckling Collapse Behavior of an Aluminum Square Tube Beam under a Bending Load (굽힘하중을 받는 알루미늄 사각관 보의 국부적 좌굴붕괴 거동에 관한 연구)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2011-2018
    • /
    • 2003
  • To analyze the bending collapse behavior of an aluminum square tube beam under a bending load, a finite element simulation for the four-point bending test has been performed. Using an aluminum tube beam specimen partly inserted with two steel bars, the local buckling deformation near the center of the tube beam was induced. The maximum bending load and the bending collapse behavior obtained from the numerical simulation were in good agreement with experimental results. Using a combination of the four-point bending test and its finite element simulation, analysis of the local buckling and the accompanied bending collapse behavior of aluminum tube beam could be quantitative accomplished.

Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel (자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

Strength Evaluation of A Failed A53B Carbon Steel Pipe with Small Punch Test and Finite Element Analysis (소형펀치시험과 유한요소해석을 이용한 A53B 탄소강 파손 배관의 강도 평가)

  • Lee, Joon-Won;Kim, Maan-Won;Shin, Kyu-In;Park, Jai-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • In this study, small punch test and tensile test were performed with specimens directly machined from an ASTM A53 grade B carbon steel pipe at which an explosion accident was occurred in the Heavy Oil Unit. Main damage mechanism of the pipe was known as a high temperature hydrogen attack(HTHA). Effects of HTHA on the mechanical strength change of the A53B steel were studied in detail. Small punch test results have showed that maximum reaction forces, SP energy and ductility were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Yield strength and tensile ultimate strength were calculated with the obtained small punch test curve results using different methods and compared the estimation methods. Small punch test simulation has been also performed with the finite element method and then mechanical strength, equivalent strain and fracture toughness were calculated with the obtained numerical analysis results. It was shown that the fracture toughness data calculated from small punch equivalent energy obtained by the finite element analysis for SP test was very low at the hydrogen attacked part.

Development of Finite Element Tire Model for Vehicle Dynamics Analysis (차량동역학 해석용 타이어 유한요소 모델 개발)

  • Jung, Sung Pil;Lee, Tae Hee;Kim, Gi Whan;Yun, So Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.858-861
    • /
    • 2014
  • This paper presents a simplified finite element tire model for vehicle dynamics analysis. The classical finite element tire model was too big to simulate dynamic properties of the tire. In the simplified model, number of nodes of the tire model was dramatically reduced, and thus its simulation time was several times less than the classical model. Bead, carcass, belt which have an important role to the dynamic characteristics of tire were replaced by simple axis symmetric membrane elements. Also the rebar element was deleted. The tire model has been verified by comparing vertical stiffness data of the simulation model to the test data.

  • PDF

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy