• 제목/요약/키워드: element removal method

검색결과 92건 처리시간 0.024초

도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공 (Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase)

  • 윤존도;왕덕현;안영철;고철호
    • 한국세라믹학회지
    • /
    • 제34권10호
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구 (A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

다중재료 구조물의 위상 최적화를 위한 재료혼합법의 개발 (Development of a Material Mixing Method for Topology Optimization of Multiple Material Structures)

  • 한석영;이수경
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.726-731
    • /
    • 2004
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

진화적 구조 최적화를 이용한 재료 혼합법의 개발 (Development of a Material Mixing Method using ESO)

  • 한석영;이수경;신민석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.259-264
    • /
    • 2003
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

  • PDF

구조 최적화를 위한 특징형상 재설계 알고리즘 (A Feature-based Reconstruction Algorithm for Structural Optimization)

  • 박상근
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 2014
  • This paper examines feature-based reconstruction algorithm using feature-based modeling and based on topology optimization technology, which aims to achieve a minimal volume weight and to satisfy user-defined constraints such as stress, deformation related conditions. The finite element model after topology optimization allows us to remove some region of a solid model for predefined volume requirement. The stress or deformation distribution resulted from finite element analysis enables us to add some material to the solid model for a robust structure. For this purpose, we propose a feature-based redesign algorithm which inserts negative features to the solid model for material removal and positive features for material addition, and we introduce a bisection method which searches an optimal structure by iteratively applying the feature-based redesign algorithm. Several examples are considered to illustrate the proposed algorithms and to demonstrate the effectiveness of the present approach.

Development of a Plate-type Megasonic with Cooling Pins for Sliced Ingot Cleaning

  • Hyunse Kim;Euisu Lim
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.21-27
    • /
    • 2023
  • In this article, a plate-type megasonic cleaning system with cooling pins is proposed for the sliced ingot, which is a raw material of silicon (Si) wafers. The megasonic system is operated with a lead zirconate titanate (PZT) actuator, which has high electric resistance, thus when it is being operated, it dissipates much heat. So this article proposes a megasonic system with cooling pins. In the design process, finite element analysis was performed and the results were used for the design of the waveguide. The frequency with the maximum impedance value was 998 kHz, which agreed well with the measured value of 997 kHz with 0.1 % error. Based on the results, the 1 MHz waveguide was fabricated. Acoustic pressures were measured, and analyzed. Finally, cleaning tests were performed, and 90 % particle removal efficiency (PRE) was achieved over 10 W power. These results imply that the developed 1 MHz megasonic will effectively clean sliced ingot wafer surfaces.

  • PDF

등급 양방향 진화적 구조 최적화에 관한 연구 (A Study on the Ranked Bidirectional Evolutionary Structural Optimization)

  • 이영신;류충현;명창문
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1444-1451
    • /
    • 2001
  • The evolutionary structural optimization(ESO) method has been under continuous development since 1992. The bidirectional evolutionary structural optimization(BESO) method is made of additive and removal procedure. The BESO method is very useful to search the global optimum and to reduce the computational time. This paper presents the ranked bidirectional evolutionary structural optimization(R-BESO) method which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO.

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Dynamic Increase factor based on residual strength to assess progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.617-624
    • /
    • 2017
  • In this study, a new empirical method is presented to obtain Dynamic Increase Factor (DIF) in nonlinear static analysis of structures against sudden removal of a gravity load-bearing element. In this method, DIF is defined as a function of minimum ratio of difference between maximum moment capacity ($M_u$) and moment demand ($M_d$) to plastic moment capacity ($M_p$) under unamplified gravity loads of elements. This function determines the residual strength of a damaged building before amplified gravity loads. For each column removal location, a nonlinear dynamic analysis and a step-by-step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived, which correspond to the ratio min $[(M_u-M_d)/M_p]$ of beams in the bays immediately adjacent to the removed column, and at all floors above it. Therefore, the new DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of a moment frame structure. The proposed DIF formulas can estimate the real residual strength of a structure based on critical member.