• 제목/요약/키워드: element order

검색결과 6,545건 처리시간 0.034초

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

AN EXTRAPOLATED HIGHER ORDER CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • 제33권5호
    • /
    • pp.511-525
    • /
    • 2017
  • We introduce an extrapolated higher order characteristic finite element method to construct approximate solutions of a Sobolev equation with a convection term. The higher order of convergence in both the temporal direction and the spatial direction in $L^2$ normed space is established and some computational results to support our theoretical results are presented.

ON THE APPLICATION OF MIXED FINITE ELEMENT METHOD FOR A STRONGLY NONLINEAR SECOND-ORDER HYPERBOLIC EQUATION

  • Jiang, Ziwen;Chen, Huanzhen
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.23-40
    • /
    • 1998
  • Mixed finite element method is developed to approxi-mate the solution of the initial-boundary value problem for a strongly nonlinear second-order hyperbolic equation in divergence form. Exis-tence and uniqueness of the approximation are proved and optimal-order $L\infty$-in-time $L^2$-in-space a priori error estimates are derived for both the scalar and vector functions approximated by the method.

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법 (Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element)

  • 조준형;박영목;우광성
    • 한국전산구조공학회논문집
    • /
    • 제25권5호
    • /
    • pp.413-420
    • /
    • 2012
  • 본 논문은 2차원 선형탄성 직접 경계요소법에서 저매개변수 요소를 사용할 때 Kernel의 적분방법에 대하여 논의하였다. 일반적으로 등매개변수 요소의 경우 형상함수로 통칭되는 해의 기저함수와 요소의 적분을 위해 사용되는 사상함수를 동일하게 사용한다. 그러나 본 논문에서는 사상함수의 차수를 낮게 취하여 순수기저절점을 도입하고 그때 직접 경계요소의 Kernel을 적분하기 위한 방법이 모색되었다. 일반적으로 경계요소법의 적분 Kernel의 경우 Log수치적분과 코쉬주치(Cauchy principal value) 등을 통해 해결하는데, 본 논문에서는 대수적 조작을 통해 적분값의 정확도를 높일 수 있도록 새로운 수식을 유도하였다. 본 연구에서 저매개변수 기반의 직접 경계요소에 대한 강건성과 정확도를 검증하기 위해 2차원 타원형 편미분방정식으로 표현되는 평면응력과 평면변형문제에 대해 적용하였다. 적용 예제로는 단순연결영역(simple connected region)의 대표적 문제인 캔틸레버보와 다중연결영역(multiple connected region)의 대표적인 문제인 개구부가 있는 사각평면에 대해 각각 수치해석을 수행한 결과 대폭적인 자유도의 감소에 비해 정확도 측면에는 기존의 방법과 차이가 없음을 볼 수 있었다. 본 논문에서 제시된 방법은 기저함수 고차화 저매개변수 직접 경계요소법(subparametric high order boundary element)과 이에 기초를 둔 저매개변수 고차 이중경계요소법(subparametric high order dual boundary element)의 초석이 될 수 있을 것이다.

A New Hybrid-Mixed Composite Laminated Curved Beam Element

  • Lee Ho-Cheol;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.811-819
    • /
    • 2005
  • In this study, we present a new efficient hybrid-mixed composite laminated curved beam element. The present element, which is based on the Hellinger-Reissner variational principle and the first-order shear deformation lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees in order to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the ($6{\times}6$) element stiffness matrix. The present study also incorporates the straightforward prediction of interlaminar stresses from equilibrium equations. Several numerical examples confirm the superior behavior of the present composite laminated curved beam element.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

A HIGHER ORDER SPLIT LEAST-SQUARES CHARACTERISTIC MIXED ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • 제38권3호
    • /
    • pp.293-319
    • /
    • 2022
  • In this paper, we introduce a higher order split least-squares characteristic mixed element scheme for Sobolev equations. First, we use a characteristic mixed element method to manipulate both convection term and time derivative term efficiently and obtain the system of equations in the primal unknown and the flux unknown. Second, we define a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We establish the convergence results for the primal unknown and the flux unknown with the second order in a time increment.

Is it shear locking or mesh refinement problem?

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.181-199
    • /
    • 2014
  • Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the studier is not preferred going to the solution with increasing mesh size or the computer memory can stack over flow than using higher order plate finite element or using integration techniques is a solution for this problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using Mindlin's theory by using higher order displacement shape function and to determine the effects of various parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates.

Innovative displacement-based beam-column element with shear deformation and imperfection

  • Tang, Yi-Qun;Ding, Yue-Yang;Liu, Yao-Peng;Chan, Siu-Lai;Du, Er-Feng
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.75-90
    • /
    • 2022
  • The pointwise equilibrium polynomial (PEP) element considering local second-order effect has been widely used in direct analysis of many practical engineering structures. However, it was derived according to Euler-Bernoulli beam theory and therefore it cannot consider shear deformation, which may lead to inaccurate prediction for deep beams. In this paper, a novel beam-column element based on Timoshenko beam theory is proposed to overcome the drawback of PEP element. A fifth-order polynomial is adopted for the lateral deflection of the proposed element, while a quadric shear strain field based on equilibrium equation is assumed for transverse shear deformation. Further, an additional quadric function is adopted in this new element to account for member initial geometrical imperfection. In conjunction with a reliable and effective three-dimensional (3D) co-rotational technique, the proposed element can consider both member initial imperfection and transverse shear deformation for second-order direct analysis of frame structures. Some benchmark problems are provided to demonstrate the accuracy and high performance of the proposed element. The significant adverse influence on structural behaviors due to shear deformation and initial imperfection is also discussed.