Browse > Article
http://dx.doi.org/10.12989/sem.2015.54.3.393

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem  

Li, Tan (State Key Laboratory for Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology)
Qi, Zhaohui (State Key Laboratory for Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology)
Ma, Xu (State Key Laboratory for Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology)
Chen, Wanji (Key Laboratory of Liaoning Province for Composite Structural Analysis of Aero craft and Simulation, Shenyang Aerospace University)
Publication Information
Structural Engineering and Mechanics / v.54, no.3, 2015 , pp. 393-417 More about this Journal
Abstract
In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.
Keywords
hybrid stress element; Mindlin plate; arbitrary order Timoshenko beam function; enhanced patch test;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Auricchio, F. and Taylor, R.L. (1994), "A shear deformation plate element with an exact thin limit", Comp. Meth. Appl. Mech. Eng., 3, 393-412.
2 Ayad, R., Dhatt, G. and Batoz, J.L. (1998), "A new hybrid-mix variational approach for Reissner-Mindlin plate, the MiSP model", Int. J. Numer. Meth. Eng., 42, 1149-1179.   DOI
3 Bathe, K.J. and Dvorkin, E.N. (1985), "A four node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383.   DOI
4 Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tonsorial components", Int. J. Numer. Meth. Eng., 22, 697-722.   DOI
5 Bathe, K.J., Iosilevich, A. and Chapelle, D. (2000), "An evaluation of the MITC shell elements", Comput. Struct., 75, 1-30.   DOI
6 Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 29, 533-560.
7 Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Numer. Meth. Eng., 35, 1603-1632.   DOI
8 Bazeley, G.P., Cheung, Y.K., Irons, B.M. and Zienkiewicz, O.C. (1965), "Triangular elements in plate bending conforming and non-conforming solutions", Proceedings of the Conference on Matrix Methods in Structural Mechanics, Dayton, Ohio: Wright Patterson Air Force Base.
9 Belytschko, T. and Tsay, C.S. (1983), "A stabilization procedure for the quadrilateral plate element with one point quadrature", Int. J. Numer. Meth. Eng., 19, 405-419.   DOI
10 Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), "Application of the quadrilateral area coordinate method: A new element for Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 66, 1-45.   DOI
11 Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234.   DOI
12 Chen, W.J. (2006), "Enhanced patch test of finite element methods", Sci. China: Ser. G. Phys-Mech. Astron., 49, 213-227.   DOI
13 Chen, W.J. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627.   DOI
14 Chen, W.J. and Cheung, Y.K. (1987), "A New Approach For The Hybrid Element Method", Int. J. Numer. Meth. Eng., 24(9), 1697-1709.   DOI
15 Chen, W.J. and Cheung, Y.K. (1996), "The Non-conforming Element Method and Refined Hybrid Method for Axisymmetric Solid", Int. J. Numer. Meth. Eng., 39(15), 2509-2529.   DOI
16 Chen, W.J. and Cheung, Y.K. (1997), "Refined nonconforming quadrilateral thin plate bending element", Int. J. Numer. Meth. Eng., 40(21), 3919-3935.   DOI
17 Chen, W.J. and Cheung, Y.K. (2001), "Refined 9-dof triangular Mindlin plate elements", Int. J. Numer. Meth. Eng., 51, 1259-1281.   DOI
18 Chen, W.J., Wang, J.Z. and Zhao, J. (2009), "The functions for patch test in finite element analysis of Mindlin plate and thin cylindrical shell", Sci. China: Ser. G. Phys-Mech. Astron., 5, 762-767.
19 Chen, W.J. and Zheng, S.J. (1998), "Refined hybrid degenerated shell element for geometrically non-linear analysis", Int. J. Numer. Meth. Eng., 41, 1195-1213.   DOI
20 De Miranda, S. and Ubertini, F. (2006), "A simple hybrid stress element for shear deformable plates", Int. J. Numer. Meth. Eng., 65, 808-833.   DOI
21 Hughes, T.J.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in finite element analysis of plates", Nucl. Eng. Des., 46, 203-222.   DOI
22 Ibrahimbegovic, A. (1992), "Plate quadrilateral finite elements with incompatible modes", Commun. Appl. Numer. Meth., 8, 497-504.   DOI
23 Lee, S.W. and Pian, T.H.H. (1978), "Improvement of plate and shell finite element by mixed formulation", AIAA J., 16, 29-34.   DOI
24 Jelenic, G. and Papa, E. (2011), "Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order", Arch. Appl. Mech., 18, 171-183.
25 Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: an extended DKT element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883.   DOI
26 Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: an extended DKQ element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1885-1908.   DOI
27 MacNeal, R.H. (1978), "A simple quadrilateral shell element", Comput. Struct., 8, 175-183.   DOI
28 Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comp. Meth. Appl. Mech. Eng., 15, 63-81.   DOI
29 Taylor, R.L., Simo, T.C., Zienkiewicz, O.C. and Chan, A.C.H. (1986), "The patch test: a condition for assessing FEM convergence", Int. J. Numer. Meth. Eng., 22(1), 39-62.   DOI
30 Strang, G. (1972), "Variational crimes in the finite element method", Ed. Aziz, A.R., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York.
31 Stummel, F. (1979), "The generalized patch test", SIAM J. Numer. Anal., 16(3), 449-471.   DOI
32 Stummel, F. (1980), "The limitation of the atch test", Int. J. Numer. Meth. Eng., 15(2), 177-188.   DOI
33 Soh, A.K., Long, Z.F. and Cen, S. (1999), "A Mindlin plate triangular element with improved interpolation based on Timoshenko's beam theory", Commun. Numer. Meth. Eng., 15, 527-532.   DOI
34 Soh, A.K., Long, Z.F. and Cen, S. (1999), "A new nine DOF triangular element for analysis of thick and thin plates", Comput. Mech., 24, 408-417.   DOI
35 Soh, A.K., Cen, S., Long, Y.Q. and Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech. A/Solid., 20, 299-326.   DOI
36 Sze, K.Y. and Chow, C.L. (1991), "A mixed formulation of 4-node Mindlin/Reissner shell/plate element with interpolated transverse shear strains", Comput. Struct., 40, 775-784.   DOI
37 Wang, M. (2001), "On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements", SIAM J. Numer. Anal., 39, 363-384.   DOI
38 Zhang, H.X. and Kuang, J.S. (2007), "Eight-node Reissner-Mindlin plate element based on boundary interpolation using Timoshenko beam function", Int. J. Numer. Meth. Eng., 69, 1345-1373.   DOI
39 Zienkiewicz, O.C. and Taylor, R.L. (1997), "The finite element patch test revisited a computer test for convergence, vali-dation and estimates", Comput. Meth. Appl. Math. Eng., 149(1-4), 223-254.   DOI
40 Zienkiewicz, O.C., Taylor R.L., and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290.   DOI
41 Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), "Linked interpolation for Reissner-Mindlin plate element: Part I-a simple quadrilateral", Int. J. Numer. Meth. Eng., 36, 30433056.