• 제목/요약/키워드: element

검색결과 37,888건 처리시간 0.046초

Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete

  • Yaman, Ismail Ozgur;Akbay, Zekai;Aktan, Haluk
    • Computers and Concrete
    • /
    • 제3권6호
    • /
    • pp.423-437
    • /
    • 2006
  • Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.

Three dimensional transition solid elements for adaptive mesh gradation

  • Choi, Chang-Koon;Lee, Nam-Ho
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.61-74
    • /
    • 1993
  • A new three-dimensional transition solid element was presented for the automated three-dimensional adaptive h-refinement or the local mesh refinement where the steep stress gradient exists. The proposed transition element was established by adding variable nodes(element nodes) to basic 8-node for an effective connection between the refined region and the coarse region with minimum degrees of freedom possible. To be consistent in accuracy with 8-node solid element with nonconforming modes, this transition element was also improved through the addition of the modified nonconforming modes. Numerical examples show that the performance of the element and the applicability to 3D adaptations are satisfactory.

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

지진시에 교량의 탄성 받침을 표현하는 범용 연결 유한 요소 모델의 유도식 (Derivation of General Link Finite Element Equation representing Pad Shoe in Bridge under Earthquake)

  • 정대열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.226-233
    • /
    • 1999
  • When we numerically model the bridge under seismic condition, the full model combining the super-structure and the sub-structure is considered for the more accurate results than the separate model. In this case, the super-structure is connected with the sub-structure by the elastic pad shoe that is difficult to model, because it has the three translational elastic stiffness and the three rotational elastic stiffness. The two-node General Link element is derived in finite element equation representing such a pad shoe, and it is verified by comparing the one General Link element model with the corresponding three legacy spring element model. It is easy to model the pad shoe, if the General Link finite element is used. And the seismic analysis result of the bridge full model structure, which is modeled with the General Link element, has been compared with the one of the separate model structure. The present study gives. more conservative result than that of the separate model, which does not consider the dynamic behaviour of the sub-structure.

  • PDF

구조물 주변의 Stokes 흐름에 대한 적응적 유한요소 해석을 위한 변절점 요소 (Variable-Node Element for Adaptive Finite Element Analysis of Stokes Flow around Structure)

  • 최창근;유원진;정근영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.168-175
    • /
    • 1996
  • This paper deals with the variable-node element for fluid flow and the adaptive h-version mesh refinement algorithm. The transient element has been formulated by the Galerkin approach in which the pressure term is replaced with the penalty function. The present element having variable mid-side node and is suitable for constructing a locally refined mesh avoiding the use of the highly distorted elements. A modified Gauss quadrature is needed to integrate the element matrices to solve the trouble associated with the discontinuity of derivatives of shape functions. Several numerical examples show that the proposed element can be effectively used in the h-version adapt ive mesh refinement

  • PDF

Improving the eigenvalue using higher order elements without re-solving

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.385-398
    • /
    • 1997
  • High order finite element have a greater convergence rate than low order finite elements, and in general produce more accurate results. These elements have the disadvantage of being more computationally expensive and often require a longer time to solve the finite element analysis. High order elements have been used in this paper to obtain a new eigenvalue solution with out re-solving the new model. The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has shown that the additional nodes associated with the higher order elements can be condensed out and solved using the original finite element solution. The higher order elements can then be used to calculate an improved eigenvalue for the finite element analysis.

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

오픈하우징의 구조적 유형화에 관한 연구 (A Typological Approach to Structural Characteristics in Open Housing)

  • 모정현;이연숙
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.45-52
    • /
    • 2004
  • The purpose of this research was to identify the structural characteristics of open housing typologically and systematically. The main method of this study was content analysis and literature review on open housing. This study found that the typological analysis on terminology and the details of the constituents concerning structural patterns in open housing indicated that the main approaches were classified into three criteria such as 'Organization Element', 'Construction Element', and 'Equipment Element'. Organization Element was classified into 'Main Dwelling Unit Area and its Form', 'Room Organization Method', 'Relationship with the Main Dwelling Unit's External Constituents', and 'Combination Method of Support and Infill'. Construction Element was classified into 'Method of Structure' and 'Structural Element Technology'. Equipment Element was classified into 'Method of Using Duct' and 'Wet Zone Method'. The attributes were determined based on these classifications. The results of this study can be used to construct an evaluation tool and further to develop a framework in understanding open housing. Technical research should be conducted on the variables that affect the flexibility of space.

유한요소법에 의한 전기기계의 자속분포해석을 위한 MACRO 공선요소 적용에 관한 연구 (A Study on the Application of Macro Air-gap Element for Magnetic Flux Distribution Analysis of Electric Machinery by F.E.M.)

  • Dal-Ho Im
    • 대한전기학회논문지
    • /
    • 제35권11호
    • /
    • pp.479-486
    • /
    • 1986
  • It is necessary to consider a rotor movement in dynamic analysis on the flux distribution of electric machinery by FEM. Therefore, if air-gap domain was subdivided into triangular elements, computation results contain errors due to variation of element shape in air-gap because the nodal points corresponding to the rotor are displaced in analyzing domain for the time difference. In order to reduce this errors, the paper presents a application of a Macro Air-gap Element that interpolation function is obtained analytically and a means to join it with linear triangular elements in the rotating machine or in the linear machine. At the end of paper, setting up analytic domain model, it compares analytic solution with the computation results of Macro Air-gap Element appliction and that of linear triangular element subdivision only to each cases of nodal displacement. And it carries out that errors due to variation of element shape are reduced effectively by application of a Macro air-gap element.

  • PDF

층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향 (Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination)

  • 김효진;홍창선
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.