• 제목/요약/키워드: electrostatic adsorption

검색결과 99건 처리시간 0.025초

활성탄으로 코팅된 집진전극의 BTEX 흡착특성 (Adsorption Characteristics of BTEX on Dust Collecting Electrode Coated with Activated Carbon)

  • 남상철;김현정;김광수
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.773-779
    • /
    • 2013
  • This study was performed to provide the basic data for the function of BTEX removal for compact electrostatic precipitator which are applicable to indoor environment (or closed spaces). For this purpose, the adsorption equilibrium test was conducted for BTEX of activated carbon sheet (ACS) and activated carbon (AC), and the adsorption characteristics of AC and ACS were evaluated using the Langmuir constant which was obtained from the adsorption characteristics, adsorption capacity and regression calculation. The surface area and adsorption pore volume of ACS reduced by 70% and 86%, respectively, as compared to those of AC, and the adsorption capacities of BTEX also showed a similar level. Thus, it is considered that ACS applied electrostatic precipitator is able to remove dust and BTEX simultaneously.

Selective removal of cationic dye pollutants using coal ash-derived zeolite/zinc adsorbents

  • Chatchai Rodwihok;Mayulee Suwannakaew;Sang Woo Han;Siyu Chen;Duangmanee Wongratanaphisan;Han S. Kim
    • Membrane and Water Treatment
    • /
    • 제14권3호
    • /
    • pp.121-128
    • /
    • 2023
  • This study introduces a NaOH/Zn-assisted hydrothermal method for the synthesis of zeolites derived from coal ash (CA). A zeolite/Zn adsorbent is successfully prepared by the activation of CA with NaOH and Zn; it is characterized by a high surface area and a negative surface charge.Methylene blue (MB) and methyl orange (MO) are selected as dye pollutants, and their adsorption onto the zeolite/Zn adsorbent is investigated. Results show the high adsorption capacities of MB and MO and that the negative surface charge facilitates electrostatic interactions between the adsorbates and adsorbents. The zeolite/Zn adsorbents shows the selective adsorption of positively charged dye MB via electrostatic interactions between the =NH+ group (positive dipole) and the oxygen functional group of the adsorbents (negative dipole). The selectivity for the positively charged dye is sufficiently high, with the removal efficiency reaching 99.41% within 10 min. By contrast, the negatively charged dye MO exhibits negligible absorption. These findings confirm the role of electrostatic interactions in the adsorption of MB, in addition to the effect of a large surface area. The results of this study are expected to facilitate the development of simple, eco-friendly, and cost-effective zeolite-based adsorptive composites from CA residuals for the selective removal of dye pollutants from CA waste.

Effects of NaOH Treatment on the Adsorption Ability of Surface Oxidized Activated Carbon for Heavy Metals

  • Min-Ho Park;So-Jeong Kim;Jung Hwan Kim;Jae-Woo Park
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.16-23
    • /
    • 2023
  • Heavy metal (Zinc, Cadmium, Lead) adsorption onto surface modified activated carbon was performed in order to better understand the effect of sodium ion addition to activated carbon. Surface modification methods in this research included water washing, nitric acid washing, and sodium addition after nitric acid washing. These surface modifications generated oxygen functional groups with sodium ions on the surface of the activated carbon.. This caused the change of the specific surface area as well as in the ratio of the carboxyl groups. Heavy metal adsorption onto sodium-containing activated carbon was the most among the three modifications. After the adsorption of heavy metals, the carboxyl group ratio decreased and sodium ions on the surface of the activated carbon were almost non-existent after the adsorption of heavy metals onto sodium-containing activated carbon. The results from this research indicated that ion exchange with sodium ions in carboxyl groups effectively improved heavy metal adsorption rather than electrostatic adsorption and hydrogen ion exchange.

Removal of Methylene blue from saline solutions by adsorption and electrodialysis

  • Lafi, Ridha;Mabrouk, Walid;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.139-148
    • /
    • 2019
  • In this study, the removal of MB from saline solutions was evaluated by two methods by adsorption and electrodialysis; the adsorption of the mixture dye/salt on dried orange peel waste (OPW) was studied in batch method. In this study the biosorption of cationic dye by OPW was investigated as a function of initial solution pH, and initial salt (sodium chloride) concentration. The maximal dye uptake at $pH{\geq}3.6$ in the absence and in the presence of salt and the dye uptake diminished considerably in the presence of increasing concentrations of salt up to 8 g/L. The Redlich Peterson and Langmuir were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. As well, this work deals with the electrodialysis application to remove the dye. Synthetic solutions were used for the investigation of the main operational factors affecting the treatment performance; such as applied voltage, pH, initial dye concentration and ionic strength. The experimental results for adsorption and electrodialysis confirmed the importance of electrostatic interactions on the dye. The electrodialysis process with standard ion exchange membranes enabled efficient desalination of cationic dye solutions; there are two main factors in fouling: electrostatic interaction between cations of dyes and the fixed charged groups of the CEM, and affinity interactions.

Electrostatic control of ion adsorption in liquid crystal cells

  • Gabovich, A.;Korniychuk, P.;Kwon, S.B.;Reznikov, Yu.;Tereshchenko, O.;Voitenko, A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.788-791
    • /
    • 2006
  • The ion adsorption on an aligning layer deposited onto a conductive electrode in a liquid crystal (LC) cell has been shown to depend strongly on the dielectric constants of the layer and its thickness d. Calculations made in the framework of the three-layer electrostatic theory showed that, depending on those and other intrinsic parameter of the problems, it is possible to observe either ion attraction or repulsion at the aligning surface. Tentative measurements of the ion adsorption dynamics on the aligning layers with various d qualitatively agree with the theory. The results obtained allow the memory effect in LCs and the sticking effect in LC displays (LCDs) to be controlled effectively.

  • PDF

Adsorption mechanism of copper ions on porous chitosan membranes: Equilibrium and XPS study

  • Ghaee, Azadeh;Zerafat, Mohammad Mahdi
    • Membrane and Water Treatment
    • /
    • 제7권6호
    • /
    • pp.555-571
    • /
    • 2016
  • Heavy metal contamination has attracted considerable attention during recent decades due to the potential risk brought about for human beings and the environment. Several adsorbent materials are utilized for the purification of contaminated water resources among which chitosan is considered as an appropriate alternative. Copper is a heavy metal contaminants found in several industrial wastewaters and its adsorption on porous and macroporous chitosan membranes is investigated in this study. Membranes are prepared by phase inversion and particulate leaching method and their morphology is characterized using SEM analysis. Batch adsorption experiments are performed and it is found that copper adsorption on macroporous chitosan membrane is higher than porous membrane. The iso-steric heat of adsorption was determined by analyzing the variations of temperature to investigate its effect on adsorption characteristics of macroporous chitosan membranes. Furthermore, desorption experiments were studied using NaCl and EDTA as eluants. The mechanism of copper adsorption was also investigated using XPS spectroscopy which confirms simultaneous occurrence of chelation and electrostatic adsorption mechanisms.

토양의 산/염기 완충능의 모델링 (Modeling of Acid/Base Buffer Capacity of soils)

  • 김건하
    • 한국토양환경학회지
    • /
    • 제3권3호
    • /
    • pp.3-10
    • /
    • 1998
  • 토양의 산/염기 완충능은 토양-오염물질-공극수로 이루어진 시스템의 pH에 직접적인 영향을 미치므로 오염물질의 토양내 거동예측시에 많은 영향을 미치는 매우 중요한 토양의 성질이다. 본 연구는 이중확산층이론과 two layer electrostatic 흡착모델을 응용하여 토양의 산/염기 완충능의 이론모델을 유도하고 이 모델의 적용절차를 제시하였다. 산-염기 적정실험을 통하여 두 종류의 카올리나이트의 완충능을 실측하고 이를 본 연구에서 개발된 모델의 예측치와 비교하였다.

  • PDF

적층 세라믹콘덴서 제조공정에서 $BaTiO_3$의 분산이 테이프캐스팅 성형체의 물성에 미치는 영향 (Effect of $BaTiO_3$ Dispersion on the Properties of Cast Tapes in Processing of Multilayer Ceramic Capacitor(MLCC))

  • 김봉호;김병관;김명호;백운규
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.214-222
    • /
    • 1996
  • The effect of physicochemical properties of organic solvent and dispersant among organic solvent dispersant binder and plasticizer which are used as processing additives in MLCC fabrication process on the dispersion of BaTiO3 was studied. The steric and electrostatic stabilization mechanisms in dispersion of BaTiO3 in organic media were evaluated respectively. The sttability of BaTiO3 achieved bysteric stabilization was dependent on the fraction of surface coverage of dispersant adsorption on BaTiO3. The electrostatic repulsive forces of BaTiO3 particles dispersed in orgainc media was found to be appreciabley great and dependent mainly on the kinds of organic solvent used. The mechanism affecting the stability of BaTiO3 was studied by the method of rheologi-cal behaviors of BaTiO3 suspension.

  • PDF

Study on pH Sensor using Methylene Blue Adsorption and A Long-Period Optical Fiber Grating Pair

  • Jeon Young-Hee;Kwon Jae-Joong;Lee Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.28-32
    • /
    • 2006
  • We propose a new pH-sensing scheme using a methylene blue adsorption on an optical fiber cladding surface. Interactions between the silica and hydroxyl ions of a base solution induce the surface of the silica negatively charged. The charged surface attracts the positively charged chromophores of methylene blue. As the pH of the solution is reduced, the electrostatic attraction will also be reduced. This electrostatic attraction can change the transmitted light intensity of the cladding mode, since the boundary condition changes. We also carried out a simulation to verify the effect from external refractive index change around a long-period fiber grating. Our results confirm that the wavelength shift by external refractive index change is negligible compared to the transmitted light intensity variation of the cladding mode. By using a long-period grating pair, we can detect the cladding mode transmittance variations. Experimentally, we showed the possibility of pH sensing in the $1.5{\mu}m$ infrared region.

Novel Phosphotungstate-titania Nanocomposites from Aqueous Media

  • Yang, Jae-Hun;Kim, Min-Kyung;Son, Ji-Hyun;Cho, Hyun-Jung;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1097-1103
    • /
    • 2007
  • We report a novel method to synthesize nanocomposites composed of titania nanoparticles and phosphotungstate ions with various composition ratios ranging from W/Ti = 12/10 to 12/500 by inducing the electrostatic interaction between the positively charged protonated titania sol-particles and the negatively charged phosphotungstate anions to flocculate and precipitate. The precipitates showed varied features depending on the composition. The precipitate from the tungsten-richest W/Ti = 12/10 reaction is amorphous in its powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy data. This material shows the Type II adsorption characteristics in its N2-adsorption isotherm, but with quite low surface area of 34 m2/g. To the contrary, the precipitates from the titanium-richer reactions (W/Ti = 12/50- 12/500) are composed of anatase nanoparticles of 2-6 nm by XRD, TEM and Raman and show the Type I adsorption characteristics. The surface area linearly increases with the titanium content from 131 m2/g for W/ Ti = 12/50 to 228 m2/g for 12/500. The precipitate from the reaction with the intermediate composition W/Ti = 12/20 is composed of anatase nanoparticles and does not have any pore accessible to N2. With the wide variety of the physical properties of the precipitates, the present method can be a novel, viable means to tailor synthesis of nanocomposite materials. A formation mechanism of the precipitates is based on the electrostatic interactions between the titania nanoparticles and phosphotungstate ions.