DOI QR코드

DOI QR Code

Novel Phosphotungstate-titania Nanocomposites from Aqueous Media

  • Yang, Jae-Hun (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kim, Min-Kyung (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Son, Ji-Hyun (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Cho, Hyun-Jung (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kwon, Young-Uk (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
  • Published : 2007.07.20

Abstract

We report a novel method to synthesize nanocomposites composed of titania nanoparticles and phosphotungstate ions with various composition ratios ranging from W/Ti = 12/10 to 12/500 by inducing the electrostatic interaction between the positively charged protonated titania sol-particles and the negatively charged phosphotungstate anions to flocculate and precipitate. The precipitates showed varied features depending on the composition. The precipitate from the tungsten-richest W/Ti = 12/10 reaction is amorphous in its powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy data. This material shows the Type II adsorption characteristics in its N2-adsorption isotherm, but with quite low surface area of 34 m2/g. To the contrary, the precipitates from the titanium-richer reactions (W/Ti = 12/50- 12/500) are composed of anatase nanoparticles of 2-6 nm by XRD, TEM and Raman and show the Type I adsorption characteristics. The surface area linearly increases with the titanium content from 131 m2/g for W/ Ti = 12/50 to 228 m2/g for 12/500. The precipitate from the reaction with the intermediate composition W/Ti = 12/20 is composed of anatase nanoparticles and does not have any pore accessible to N2. With the wide variety of the physical properties of the precipitates, the present method can be a novel, viable means to tailor synthesis of nanocomposite materials. A formation mechanism of the precipitates is based on the electrostatic interactions between the titania nanoparticles and phosphotungstate ions.

Keywords

References

  1. Shchukin, D. G.; Caruso, R. A. Chem. Mater. 2004, 16, 2287 https://doi.org/10.1021/cm0497780
  2. Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.; Misono, M.; Monson, P. A.; Pez, G.; Scherer, G. W.; Vartuli, J. C.; Yaghi, O. M. Chem. Mater. 1999, 11, 2633 https://doi.org/10.1021/cm9805929
  3. Jhung, S. H.; Yoon, J. W.; Kim, H. K.; Chang, J. S. Bull. Korean Chem. Soc. 2005, 26, 1075 https://doi.org/10.5012/bkcs.2005.26.7.1075
  4. Carreon, M. A.; Guliants, V. V. Eur. J. Inorg. Chem. 2005, 1, 27
  5. Shimizu, Y.; Hyodo, T.; Egashira, M. Catal. Surv. Asia 2004, 8, 127 https://doi.org/10.1023/B:CATS.0000027014.79515.87
  6. Li, L.; Wu, Q. Y.; Guo, Y. H.; Hu, C. W. Micropor. Mesopor. Mater. 2005, 87, 1 https://doi.org/10.1016/j.micromeso.2005.07.035
  7. Hayashi, K.; Takahashi, M.; Nomiya, K. Dalton Transactions 2005, 23, 3751
  8. Hayashi, K.; Murakami, H.; Nomiya, K. Inorg. Chem. 2006, 45, 8078 https://doi.org/10.1021/ic060661i
  9. He, T.; Yao, J. N. Progress in Materials Science 2006, 51, 810 https://doi.org/10.1016/j.pmatsci.2005.12.001
  10. Bai, B.; Zhao, J. L.; Feng, X. Mater. Lett. 2003, 57, 3914 https://doi.org/10.1016/S0167-577X(03)00240-4
  11. Yang, Y.; Guo, Y. H.; Hu, C. W.; Jiang, C. J.; Wang, E. B. J. Mater. Chem. 2003, 13, 1686 https://doi.org/10.1039/b212868c
  12. Zhu, J.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M. J. Photochem. Photobiol. A 2006, 180, 196 https://doi.org/10.1016/j.jphotochem.2005.10.017
  13. Su, C.; Tseng, C. M.; Chen, L. F.; You, B. H.; Hsu, B. C.; Chen, S. S. Thin Solid Films 2006, 498, 259 https://doi.org/10.1016/j.tsf.2005.07.123
  14. Pakhomov, N. A.; Buyanov, R. A. Kinet. Catal. 2005, 46, 669 https://doi.org/10.1007/s10975-005-0122-8
  15. Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press: Boston, 1990; Chap. 2, p 4
  16. Myers, D. Surfaces, Interfaces, and Colloids; VCH Publishers: New York, 1991; Chap. 10
  17. Son, J. H.; Kwon, Y. U. Inorg. Chim. Acta 2005, 358, 310 https://doi.org/10.1016/j.ica.2004.07.046
  18. Son, J. H.; Kwon, Y. U. Inorg. Chem. 2004, 43, 1929 https://doi.org/10.1021/ic035278h
  19. Son, J. H.; Kwon, Y. U.; Han, O. H. Inorg. Chem. 2003, 42, 4153 https://doi.org/10.1021/ic0340377
  20. Son, J. H.; Choi, H.; Kwon, Y. U.; Han, O. H. J. Non-Crystal Solid 2003, 318, 186 https://doi.org/10.1016/S0022-3093(02)01855-0
  21. Son, J. H.; Kwon, Y. U. Bull. Kor. Chem. Soc. 2001, 22, 1224
  22. Son, J. H.; Choi, H.; Kwon, Y. U. J. Am. Chem. Soc. 2000, 122, 10492
  23. Choi, H.; Kwon, Y. U.; Han, O. H. Chem. Mater. 1999, 11, 1641 https://doi.org/10.1021/cm9902117
  24. Morris, D. F. C. Structure Bonding 1969, 6, 157 https://doi.org/10.1007/BFb0118857
  25. Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper & Row: New York, 1983; Chap. 6
  26. Liu, Y.; Claus, R. O. J. Am. Chem. Soc. 1997, 119, 5273 https://doi.org/10.1021/ja970587q
  27. Bain, D. C.; Smith, B. F. L. In A Handbook of Determinative Methods in Clay Mineralogy; Wilson, M. J., Ed.; Chapman and Hall: New York, 1987; p 253
  28. Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison- Wesley Publishing Company: California, 1978; p 101
  29. Wang, C.; Deng, Z. X.; Li, Y. Inorg. Chem. 2001, 40, 5210 https://doi.org/10.1021/ic0101679
  30. Zhang, J.; Li, M.; Feng, Z.; Chen, J.; Li, C. J. Phys. Chem. B 2006, 110, 927 https://doi.org/10.1021/jp0552473
  31. Wang, C.; Geng, A.; Guoa, Y.; Jiang, S.; Qu, X.; Li, L. J. Colloid Interf. Sci. 2006, 301, 236 https://doi.org/10.1016/j.jcis.2006.05.002
  32. Zhang, W. F.; He, Y. L.; Zhang, M. S.; Yin, Z.; Chen, Q. J. Phys. D: Appl. Phys. 2000, 33, 12
  33. Choi, H. C.; Jung, Y. M.; Kim, S. B. Bull. Kor. Chem. Soc. 2004, 25, 426 https://doi.org/10.5012/bkcs.2004.25.3.426
  34. Bersani, D.; Lottici, P. P.; Ding, X. Z. Appl. Phys. Lett. 1998, 72, 73 https://doi.org/10.1063/1.120648
  35. Lagarec, K.; Desgreniers, S. Solid State Commun. 1995, 94, 519 https://doi.org/10.1016/0038-1098(95)00129-8
  36. Zhao, Y.; Lee, U. H.; Suh, M.; Kwon, Y. U. Bull. Kor. Chem. Soc. 2004, 25, 1341 https://doi.org/10.5012/bkcs.2004.25.9.1341
  37. Edwards, J. C.; Thiel, C. Y.; Benac, B.; Knifton, J. F. Catal. Lett. 1998, 51, 77 https://doi.org/10.1023/A:1019045319788
  38. Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: New York, 1982
  39. Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids; Principles, Methodology and Applications; Academic Press: London, 1999
  40. Han, Y. S.; Yamanaka, S.; Choy, J. H. Appl. Catal. A 1998, 174, 83 https://doi.org/10.1016/S0926-860X(98)00153-7
  41. Park, J. H.; Yang, J. H.; Yoon, J. B.; Hwang, S. J.; Choy, J. H. J. Phys. Chem. B 2006, 110, 1592 https://doi.org/10.1021/jp055601x
  42. Han, Y. S.; Yamanaka, S.; Choy, J. H. J. Solid State Chem. 1999, 144, 45 https://doi.org/10.1006/jssc.1998.8115

Cited by

  1. Effects of TiO2 shells on optical and thermal properties of silver nanowires vol.22, pp.23, 2012, https://doi.org/10.1039/c2jm00010e
  2. Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species vol.11, pp.8, 2009, https://doi.org/10.1039/b901957j
  3. Characteristic of Organic Thin Film Depending on Carbon Content by Fourier Transform Infrared Spectra and X-ray Diffraction Pattern vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1588
  4. Effect of Graphite Nanofibers on Poly(methyl methacrylate) Nanocomposites for Bipolar Plates vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.671