Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.7.1097

Novel Phosphotungstate-titania Nanocomposites from Aqueous Media  

Yang, Jae-Hun (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Kim, Min-Kyung (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Son, Ji-Hyun (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Cho, Hyun-Jung (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Kwon, Young-Uk (Department of Chemistry, BK-21 School of Chemical Materials Science, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
Publication Information
Abstract
We report a novel method to synthesize nanocomposites composed of titania nanoparticles and phosphotungstate ions with various composition ratios ranging from W/Ti = 12/10 to 12/500 by inducing the electrostatic interaction between the positively charged protonated titania sol-particles and the negatively charged phosphotungstate anions to flocculate and precipitate. The precipitates showed varied features depending on the composition. The precipitate from the tungsten-richest W/Ti = 12/10 reaction is amorphous in its powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy data. This material shows the Type II adsorption characteristics in its N2-adsorption isotherm, but with quite low surface area of 34 m2/g. To the contrary, the precipitates from the titanium-richer reactions (W/Ti = 12/50- 12/500) are composed of anatase nanoparticles of 2-6 nm by XRD, TEM and Raman and show the Type I adsorption characteristics. The surface area linearly increases with the titanium content from 131 m2/g for W/ Ti = 12/50 to 228 m2/g for 12/500. The precipitate from the reaction with the intermediate composition W/Ti = 12/20 is composed of anatase nanoparticles and does not have any pore accessible to N2. With the wide variety of the physical properties of the precipitates, the present method can be a novel, viable means to tailor synthesis of nanocomposite materials. A formation mechanism of the precipitates is based on the electrostatic interactions between the titania nanoparticles and phosphotungstate ions.
Keywords
Electrostatic interaction; Intercluster salts; Nanocomposite; Phospotungstate; Titania nanoparticle;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Park, J. H.; Yang, J. H.; Yoon, J. B.; Hwang, S. J.; Choy, J. H. J. Phys. Chem. B 2006, 110, 1592   DOI   ScienceOn
2 Han, Y. S.; Yamanaka, S.; Choy, J. H. J. Solid State Chem. 1999, 144, 45   DOI   ScienceOn
3 Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: New York, 1982
4 Son, J. H.; Choi, H.; Kwon, Y. U. J. Am. Chem. Soc. 2000, 122, 10492
5 Choi, H.; Kwon, Y. U.; Han, O. H. Chem. Mater. 1999, 11, 1641   DOI   ScienceOn
6 Morris, D. F. C. Structure Bonding 1969, 6, 157   DOI
7 Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper & Row: New York, 1983; Chap. 6
8 Liu, Y.; Claus, R. O. J. Am. Chem. Soc. 1997, 119, 5273   DOI   ScienceOn
9 Pakhomov, N. A.; Buyanov, R. A. Kinet. Catal. 2005, 46, 669   DOI   ScienceOn
10 Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press: Boston, 1990; Chap. 2, p 4
11 Myers, D. Surfaces, Interfaces, and Colloids; VCH Publishers: New York, 1991; Chap. 10
12 Son, J. H.; Kwon, Y. U. Inorg. Chim. Acta 2005, 358, 310   DOI   ScienceOn
13 Zhu, J.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M. J. Photochem. Photobiol. A 2006, 180, 196   DOI   ScienceOn
14 Bain, D. C.; Smith, B. F. L. In A Handbook of Determinative Methods in Clay Mineralogy; Wilson, M. J., Ed.; Chapman and Hall: New York, 1987; p 253
15 Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison- Wesley Publishing Company: California, 1978; p 101
16 Yang, Y.; Guo, Y. H.; Hu, C. W.; Jiang, C. J.; Wang, E. B. J. Mater. Chem. 2003, 13, 1686   DOI   ScienceOn
17 Su, C.; Tseng, C. M.; Chen, L. F.; You, B. H.; Hsu, B. C.; Chen, S. S. Thin Solid Films 2006, 498, 259   DOI   ScienceOn
18 Lagarec, K.; Desgreniers, S. Solid State Commun. 1995, 94, 519   DOI   ScienceOn
19 Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids; Principles, Methodology and Applications; Academic Press: London, 1999
20 Han, Y. S.; Yamanaka, S.; Choy, J. H. Appl. Catal. A 1998, 174, 83   DOI   ScienceOn
21 Zhang, J.; Li, M.; Feng, Z.; Chen, J.; Li, C. J. Phys. Chem. B 2006, 110, 927   DOI   ScienceOn
22 Wang, C.; Geng, A.; Guoa, Y.; Jiang, S.; Qu, X.; Li, L. J. Colloid Interf. Sci. 2006, 301, 236   DOI   ScienceOn
23 Son, J. H.; Choi, H.; Kwon, Y. U.; Han, O. H. J. Non-Crystal Solid 2003, 318, 186   DOI   ScienceOn
24 Son, J. H.; Kwon, Y. U. Bull. Kor. Chem. Soc. 2001, 22, 1224
25 Hayashi, K.; Takahashi, M.; Nomiya, K. Dalton Transactions 2005, 23, 3751
26 Son, J. H.; Kwon, Y. U. Inorg. Chem. 2004, 43, 1929   DOI   ScienceOn
27 Son, J. H.; Kwon, Y. U.; Han, O. H. Inorg. Chem. 2003, 42, 4153   DOI   ScienceOn
28 Li, L.; Wu, Q. Y.; Guo, Y. H.; Hu, C. W. Micropor. Mesopor. Mater. 2005, 87, 1   DOI   ScienceOn
29 Hayashi, K.; Murakami, H.; Nomiya, K. Inorg. Chem. 2006, 45, 8078   DOI   ScienceOn
30 Edwards, J. C.; Thiel, C. Y.; Benac, B.; Knifton, J. F. Catal. Lett. 1998, 51, 77   DOI
31 Zhang, W. F.; He, Y. L.; Zhang, M. S.; Yin, Z.; Chen, Q. J. Phys. D: Appl. Phys. 2000, 33, 12
32 Choi, H. C.; Jung, Y. M.; Kim, S. B. Bull. Kor. Chem. Soc. 2004, 25, 426   DOI   ScienceOn
33 Bersani, D.; Lottici, P. P.; Ding, X. Z. Appl. Phys. Lett. 1998, 72, 73   DOI   ScienceOn
34 Wang, C.; Deng, Z. X.; Li, Y. Inorg. Chem. 2001, 40, 5210   DOI   ScienceOn
35 Shimizu, Y.; Hyodo, T.; Egashira, M. Catal. Surv. Asia 2004, 8, 127   DOI   ScienceOn
36 Zhao, Y.; Lee, U. H.; Suh, M.; Kwon, Y. U. Bull. Kor. Chem. Soc. 2004, 25, 1341   DOI   ScienceOn
37 Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.; Misono, M.; Monson, P. A.; Pez, G.; Scherer, G. W.; Vartuli, J. C.; Yaghi, O. M. Chem. Mater. 1999, 11, 2633   DOI   ScienceOn
38 He, T.; Yao, J. N. Progress in Materials Science 2006, 51, 810   DOI   ScienceOn
39 Bai, B.; Zhao, J. L.; Feng, X. Mater. Lett. 2003, 57, 3914   DOI   ScienceOn
40 Shchukin, D. G.; Caruso, R. A. Chem. Mater. 2004, 16, 2287   DOI   ScienceOn
41 Jhung, S. H.; Yoon, J. W.; Kim, H. K.; Chang, J. S. Bull. Korean Chem. Soc. 2005, 26, 1075   DOI   ScienceOn
42 Carreon, M. A.; Guliants, V. V. Eur. J. Inorg. Chem. 2005, 1, 27