• Title/Summary/Keyword: electrospray tandem MS

Search Result 137, Processing Time 0.023 seconds

Identification and Quantification of Glucosinolates in Rapeseed (Brassica napus L.) Sprouts Cultivated under Dark and Light Conditions

  • Lee, Min-Ki;Arasu, Mariadhas Valan;Chun, Jin-Hyuk;Seo, Jeong Min;Lee, Ki-Teak;Hong, Soon-Taek;Kim, In Ho;Lee, Yong-Hwa;Jang, Young-Seok;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • BACKGROUND: This study was performed for the identification and quantification of glucosinolate (GSL) contents in seven varieties of rapeseed (Brassica napus L.) sprouts cultivated under dark and light conditions. METHODS AND RESULTS: Crude glucosinolates (GSLs) were desulfated by treating with aryl sulfatase and purified using diethylaminoethyl sepharose (DEAE) anion exchange column. Individual GSLs were quantified using high-performance liquid chromatography (HPLC) with electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Eleven GSLs including six aliphatic (progoitrin, sinigrin, glucoalyssin, gluconapoleiferin, gluconapin, and glucobrassicanapin), four indolyl (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) and one aromatic (gluconasturtiin) were identified based on the fragmentation patterns of MS spectrum. Aliphatic GSLs were noted as the predominant group with average 85.2% of the total contents. The most abundant GSLs were progoitrin which was ranged at $8.14-118.68{\mu}mol/g$ dry weight (DW). The highest total GSL amounts were documented in 'Hanra' ($146.02{\mu}mol/g$ DW) under light condition and 'Mokpo No. 68' ($86.67{\mu}mol/g$ DW) in dark condition, whereas the lowest was in 'Tamra' (30.13 and $14.50{\mu}mol/g$ DW) in both conditions. The sum of aliphatic GSLs attributed > 80% in all varieties, except 'Tamra' (67.7% and 64.9% in dark and light conditions, respectively) in the total GSL accumulation. Indolyl GSLs were ranged $2.41-15.73{\mu}mol/g$ DW, accounted 2.78-33.6% of the total GSLs in rapeseed varieties. CONCLUSION(S): These results provide valuable information regarding potential beneficial GSL contents individually. This study attempts to contribute to knowledge of the nutritional properties of the different varieties of rapeseed plants. These results may be useful for the evaluation of dietary information.

Bioequivqlence of Gabarep Tablet to Neurotin Tablet (Gabapentin 800 mg) (가바렙정 (가바펜틴 800 mg)의 생물학적 동등성 평가)

  • Seo, Young-Hwan;Jeong, Ju-Cheol;Lee, Jae-Young;Li, Zheng-Yi;Yoon, Hyoung-Jong;Sohn, Uy-Dong;Bang, Joon-Seok;Kim, Ho-Hyun;Jeong, Ji-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • The aim of the present study was to evaluate the bioequivalence of two gabapentin preparations. We used Neurontin tablet 800 mg (Pfizer Korea Inc.) as a reference drug for bioequivalence of Gabalep tablet 800 mg (Chong Kun Dang Pharmaceutical Co., Korea), and performed this whole study according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty five healthy male volunteers were administered with each drug in a randomized $2{\times}2$ cross-over study with one week washout interval. After drug administration, blood was taken at predetermined time intervals ($0{\sim}24$ hours) and the concentrations of gabapentin in serum were determined using an high performance liquid chromatography-tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction mornitoring (MRM). The analytical method was validated in specificity, accuracy, precision and linearity. The phar-macokinetic parameters such as AUCt and Cmax were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed AUCt and Cmax. $Mean{\pm}SD$. of AUCt and Cmax value for reference drug and test drug were $29.94{\pm}9.23\;({\mu}g/mL{\cdot}hr)$ and $3.12{\pm}1.11\;({\mu}g/mL{\cdot}hr)$, and $31.48{\pm}9.77\;({\mu}g/mL{\cdot}hr)$ and $3.15{\pm}1.03\;({\mu}g/mL)$, respectively. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log(0.8) to log(1.25) for AUCt and Cmax, respectively. These results indicate that Gabalep tablet 800 mg is bioequivalent to Neurontin tablet 800 mg.

Development and validation of an LC-MS/MS method for determination of compound K in human plasma and clinical application

  • Kim, Jung Soo;Kim, Yunjeong;Han, Song-Hee;Jeon, Ji-Young;Hwang, Minho;Im, Yong-Jin;Kim, Jung Hyun;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.135-141
    • /
    • 2013
  • A rapid, sensitive and selective analytical method was developed and validated for the determination of compound K, a major intestinal bacterial metabolite of ginsenosides in human plasma. Liquid-liquid extraction was used for sample preparation and analysis, followed by liquid chromatography tandem spectrometric analysis and an electrospray-ionization interface. Compound K was analyzed on a Phenomenex Luna C18 column ($100{\times}2.00$ mm, 3 ${\mu}m$) with the mobile phase run isocratically with 10 mM ammonium acetate-methanol-acetonitrile (5:47.5:47.5, v/v/v) at a flow rate of 0.5 mL/min. The method was validated for accuracy (relative error <12.63%), precision (coefficient of variation <9.14%), linearity, and recovery. The assay was linear over the entire range of calibration standards i.e., a concentration range of 1 ng/mL to 1,000 ng/mL ($r^2$ >0.9968). The recoveries of compound K after liquid-liquid extraction at 1, 2, 400, and 800 ng/mL were $106.00{\pm}0.08%$, $103.50{\pm}0.19%$, $111.45{\pm}5.21%$, and $89.62{\pm}34.46%$ for intra-day and $85.40{\pm}0.08%$, $94.50{\pm}0.09%$, $112.50{\pm}5.21%$, and $95.87{\pm}34.46%$ for inter-day, respectively. The lower limit of quantification of the analytical method of compound K was 1 ng/mL in human plasma. The developed method was successfully applied to a pharmacokinetic study of compound K after oral administration in ten of healthy human subjects.

Purification and Characterization of Antibacterial Compound Produced by Bacillus subtilis MJP1 (Bacillus subtilis MJP1이 생산하는 항세균 물질의 분리.정제 및 특성규명)

  • Yim, Eun-Jung;Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • Antibacterial compound from Bacillus subtilis MJP1 was purified using C18 Sep-Pak cartridge, ion exchange chromatography, and gel filtration chromatography. The purified antibacterial compound showed antibacterial activity against Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus subsp. aureus, and Enterococcus faecalis. The purified antibacterial compound was found to be stable at $100^{\circ}C$ for 5 min and in the pH range of 3.0~9.0, but it was unstable at pH 10.0. It was inactivated by proteinase K and pronase E, and heat treatment at $121^{\circ}C$ for 15 min, but it was stable with lipase and $\alpha$-amylase treatment, which indicated its proteineous nature. Ultra performance liquid chromatography and electrospray ionization tandem mass spectrometry analysis were used to identify the purified antibacterial compound and confirmed the existence of two peptides (3356.54 Da, 3400.5244 Da).

Chemical transformation and target preparation of saponins in stems and leaves of Panax notoginseng

  • Wang, Ru-Feng;Li, Juan;Hu, Hai-Jun;Li, Jia;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.270-276
    • /
    • 2018
  • Background: Notoginsenoside Ft1 is a promising potential candidate for cardiovascular and cancer disease therapy owing to its positive pharmacological activities. However, the yield of Ft1 is ultralow utilizing reported methods. Herein, an acid hydrolyzing strategy was implemented in the acquirement of rare notoginsenoside Ft1. Methods: Chemical profiles were identified by ultraperformance liquid chromatography coupled with quadruple-time-of-flight and electrospray ionization mass spectrometry (UPLC-Q/TOF-ESI-MS). The acid hydrolyzing dynamic changes of chemical compositions and the possible transformation pathways of saponins were monitored by ultrahigh-performance LC coupled with tandem MS (UHPLC-MS/ MS). Results and conclusion: Notoginsenoside Ft1 was epimerized from notoginsenoside ST4, which was generated through cleaving the carbohydrate side chains at C-20 of notoginsenosides Fa and Fc, and vinaginsenoside R7, and further converted to other compounds via hydroxylation at C-25 or hydrolysis of the carbohydrate side chains at C-3 under the acid conditions. High temperature contributed to the hydroxylation reaction at C-25 and 25% acetic acid concentration was conducive to the preparation of notoginsenoside Ft1. C-20 epimers of notoginsenoside Ft1 and ST4 were successfully separated utilizing solvent method of acetic acid solution. The theoretical preparation yield rate of notoginsenoside Ft1 was about 1.8%, which would be beneficial to further study on its bioactivities and clinical application.

Bioequivalence of Atorva Tablet® to Lipitor Tablet® (Atorvastatin 20 mg) (리피토정® (아토르바스타틴 20 mg)에 대한 아토르바정®의 생물학적동등성)

  • Lim, Hyun-Kyun;Lee, Tae-Ho;Lee, Jae-Hyun;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • The present study describes the evaluation of the bioequivalence of two atorvastatin tablets, Lipitor $Tablet^{(R)}$ (Pfizer, reference drug) and Atorva $Tablet^{(R)}$ (Yuhan, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Forty-nine healthy male Korean volunteers received each medicine at the atorvastatin dose of 40 mg in a $2{\times}2$ crossover study with a two weeks washout interval. After drug administration, serial blood samples were collected at a specific time interval from 0-48 hours. The plasma atorvastatin concentrations were monitored by an high performance liquid chromatography -tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.5 min and calibration curves were linear over the concentration range of 0.1-100 ng/mL for atorvastatin. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 48hr) was calculated by the linear log trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were complied trom the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Atorva $Tablet^{(R)}$ / Lipitor $Tablet^{(R)}$ were ${\log}\;0.9413{\sim}{\log}\;1.0179$ and ${\log}\;0.831{\sim}{\log}\;1.0569$, respectively. These values were within the acceptable bioequivalence intervals of ${\log}\;0.8{\sim}{\log}\;1.25$. Based on these statistical considerations, it was concluded that the test drug, Atorva $Tablet^{(R)}$ was bioequivalent to the reference drug, Lipitor $Tablet^{(R)}$.

Identification of Glutathione Conjugates of 2, 3-Dibromopropene in Male ICR Mice

  • Lee Sang Kyu;Baik Seo Yeon;Jeon Tae Won;Jun In Hye;Kim Ghee Hwan;Jin Chun Hua;Lee Dong Ju;Kim Jun Kyou;Yum Young Na;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.172-177
    • /
    • 2006
  • Hepatotoxic potential of 2, 3-dibromopropene (2, 3-DBPE) and its conjugation with glutathione (GSH) were investigated in male ICR mice. Treatment of mice with 20, 50, and 100 mg/kg of 2, 3-DBPE for 24 h caused elevation of serum alanine aminotransferase and aspartate aminotransferase activities. The hepatic content of GSH was not changed by 2, 3-DBPE. Meanwhile, the GSH content was slightly reduced when mice were treated with 2, 3-DBPE for 6 h and significantly increased 12 h after the treatment. Subsequently, a possible formation of GSH conjugate of 2, 3-DBPE was investigated in vivo. After the animals were treated orally with 20, 50, and 100 mg/kg of 2, 3-DBPE, the animals were subjected to necropsy 6, 12, and 24 h later. A conjugate of S-2-bromopropenyl GSH was identified in liver and serum treated with 100 mg/kg of 2, 3-DBPE by using liquid chromatography-electrospray ionization tandem mass spectrometry. The protonated molecular ions $[M+H]^+$ of S-2-bromopropenyl GSH were observed at m/z 425.9 and 428.1 in the positive ESI spectrum with a retention time of 6.35 and 6.39 min, respectively. In a time-course study in livers following an oral treatment of mice with 100 mg/kg of 2, 3-DBPE for 6, 12, and 24 h, the 2, 3-DBPE GSH conjugate was detected maximally 6 h after the treatment. The present results suggested that 2, 3-DBPE-induced hepatotoxicity might be related with the production of its GSH conjugate.

Component Analysis of Suaeda asparagoides Extracts (나문재 추출물의 성분 분석)

  • Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • In the previous study, the anti-oxidant activity of oxtract/fraction of Sueada aspparagoides(SA) and the stability test for the cream containing SA extract were investigated respectively[1,2]. In this study, the components of SA extract were analyzed by TLC, HPLC, and LC/ESI-MS/MS, $^1H$-NMR. TLC chromatogram of ethyl acetate fraction of SA extract revealed 5 bands $(SA1{\sim}SA5)$. HPLC chromatogram of aglycone fractions obtained from deglycoylation reaction of ethyl acetate fraction showed 2 bands (SAA 2 and SAA 1), which were identified as quercetin (composition ratio, 16.88%) and kaempferol (83.12%) in the order of elution time. Among 5 bands of TLC chromatogram, 4 bands $(SA2{\sim}SA5)$ also were Identified as kaempferol-3-O-glucoside (SA 2), quercetin-3-O-glucoside (SA3), kaempferol-3-O-rutinoside (SA 4), quercetin-3-O-rutinoside (SA 5) by LC/ESI-MS/MSMS/MS. respectively. The spectrum generated for SAA 1 by LC/ESI-MS/MS in the negative ion mode also gave the ion corresponding to the deprotonated aglycone $[M-H]^-$ (285m/z), the $^1H$-NMR spectrum contained signals [${\delta}$ 6.19 (1H, d, J=1.8Hz, H-6), ${\delta}$ 6.44 (1H, d, J=1.8Hz, H-8), ${\delta}$ 6.92 (2H, d, J=9.0Hz, H-3', 5'), ${\delta}$ 8.04 (2H, d, J=9.0Hz, H-2', 6', thus SAA 1 was identified as kaempferol. SAA 2 yielded the deprotonated agycone ion $[M-H]^-$ (301m/z), $^1H$-NMR spectrum showed signals [${\delta}$ 6.20 (1H, d, J=2.0Hz, H-6), ${\delta}$ 6.42 (1H, d, J=2.0Hz, H-8), ${\delta}$ 6.90 (1H, d, J=8.6Hz, H-5'), ${\delta}$ 7.55 (1H, dd, J=8.6, 2.2Hz, H-6'), ${\delta}$ 7.69 (1H, d, J=2.2Hz, H-2', thus SAA 2 was Identified as quercetin. In conclusion, with the anti-oxidant activity and the stability test reported previously, component analysis of SA extracts could be applicable to new cosmeceuticals.

Determination of finasteride in human serum by LC-MS/MS (LC-MS/MS를 이용한 혈청 중 finasteride 분석)

  • Nam, Hye-Seon;Nam, Kyong-Hee;Jung, Su-Hee;Lee, Jang-Woo;Kang, Jin-Yeong;Hong, Soon-Keun;Kim, Tae-Sung;Kang, Tae-Seok;Yoon, Hae-Jung;Lee, Kwang-Ho;Rhee, Gyu-Seek
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.345-351
    • /
    • 2011
  • A liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) method was developed and validated for the determination of finasteride in human serum. Beclomethasone was used as internal standard (IS) and liquid-liquid extraction (LLE) using methyl tert-butyl ether (MTBE) was carried out to isolate analyte. The mass transitions monitored in multiple reaction monitoring (MRM) in positive ion mode were m/z 373.2${\rightarrow}$305.2 for finasteride and m/z 409.3${\rightarrow}$391.2 for IS. Retention times of finasteride and IS were 5.81 and 5.46 min, respectively. The limit of quantitation (LOQ) was 0.1 ng/mL and the calibration curve showed good linearity in the range of 0.1~20.0 ng/mL ($R^2$=0.9997). The intra-day assay precision and accuracy were in the range 6.3~10.6% and 97.3~103.6%, respectively, and the inter-day assay precision and accuracy were in the range 0.8~5.2% and 99.8~102.5%, respectively. The sample extract recovery of the method was 80~83%.

Analysis of dutasteride in human serum by LC-MS/MS (LC-MS/MS를 이용한 혈청 중 dutasteride 분석)

  • Nam, Hye-Seon;Nam, Kyong-Hee;Jung, Su-Hee;Lee, Jang-Woo;Kang, Jin-Yeong;Hong, Soon-Keun;Kim, Tae-Sung;Jung, Ki-Kyung;Kang, Tae-Seok;Yoon, Hae-Jung;Lee, Kwang-Ho;Rhee, Gyu-Seek
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The determination and confirmation of dutasteride in human serum was performed by a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS). Beclomethasone as an internal standard (I.S.) was added to the serum and the mixed sample was pretreated by liquid-liquid extraction (LLE) with methyl tert-butyl ether (MTBE). The mass transitions of dutasteride and I.S. monitored in multiple reaction monitoring (MRM) were m/z 529.6${\rightarrow}$461.5 and m/z 409.3${\rightarrow}$391.2, respectively, and the retention times were 6.45 and 5.46 min, respectively. The calibration curve was linear in the concentration range of 0.5~30.0 ng/mL ($R^2$= 0.9999) and the limit of quantitation (LOQ) was found to be 0.5 ng/mL. The recovery of dutasteride was shown to be 66~72%. The intra-day assay precision and accuracy were in the range 3.5~5.5% and 85.7~89.9%, respectively, and the interday assay precision and accuracy were in the range 4.2~5.8% and 90.8~95.8%, respectively.