Browse > Article
http://dx.doi.org/10.5142/jgr.2013.37.135

Development and validation of an LC-MS/MS method for determination of compound K in human plasma and clinical application  

Kim, Jung Soo (Biomedical Research Institute of Chonbuk National University Hospital)
Kim, Yunjeong (Biomedical Research Institute of Chonbuk National University Hospital)
Han, Song-Hee (Biomedical Research Institute of Chonbuk National University Hospital)
Jeon, Ji-Young (Biomedical Research Institute of Chonbuk National University Hospital)
Hwang, Minho (Biomedical Research Institute of Chonbuk National University Hospital)
Im, Yong-Jin (Biomedical Research Institute of Chonbuk National University Hospital)
Kim, Jung Hyun (Biomedical Research Institute of Chonbuk National University Hospital)
Lee, Sun Young (Biomedical Research Institute of Chonbuk National University Hospital)
Chae, Soo-Wan (Biomedical Research Institute of Chonbuk National University Hospital)
Kim, Min-Gul (Biomedical Research Institute of Chonbuk National University Hospital)
Publication Information
Journal of Ginseng Research / v.37, no.1, 2013 , pp. 135-141 More about this Journal
Abstract
A rapid, sensitive and selective analytical method was developed and validated for the determination of compound K, a major intestinal bacterial metabolite of ginsenosides in human plasma. Liquid-liquid extraction was used for sample preparation and analysis, followed by liquid chromatography tandem spectrometric analysis and an electrospray-ionization interface. Compound K was analyzed on a Phenomenex Luna C18 column ($100{\times}2.00$ mm, 3 ${\mu}m$) with the mobile phase run isocratically with 10 mM ammonium acetate-methanol-acetonitrile (5:47.5:47.5, v/v/v) at a flow rate of 0.5 mL/min. The method was validated for accuracy (relative error <12.63%), precision (coefficient of variation <9.14%), linearity, and recovery. The assay was linear over the entire range of calibration standards i.e., a concentration range of 1 ng/mL to 1,000 ng/mL ($r^2$ >0.9968). The recoveries of compound K after liquid-liquid extraction at 1, 2, 400, and 800 ng/mL were $106.00{\pm}0.08%$, $103.50{\pm}0.19%$, $111.45{\pm}5.21%$, and $89.62{\pm}34.46%$ for intra-day and $85.40{\pm}0.08%$, $94.50{\pm}0.09%$, $112.50{\pm}5.21%$, and $95.87{\pm}34.46%$ for inter-day, respectively. The lower limit of quantification of the analytical method of compound K was 1 ng/mL in human plasma. The developed method was successfully applied to a pharmacokinetic study of compound K after oral administration in ten of healthy human subjects.
Keywords
Panax ginseng; Compound K; Fermented Korean red ginseng; LC-MS/MS; Pharmacokinetics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 2005;28:652-656.   DOI   ScienceOn
2 Cuong TT, Yang CS, Yuk JM, Lee HM, Ko SR, Cho BG, Jo EK. Glucocorticoid receptor agonist compound K regulates Dectin-1-dependent inflammatory signaling through inhibition of reactive oxygen species. Life Sci 2009;85:625-633.   DOI   ScienceOn
3 Han GC, Ko SK, Sung JH, Chung SH. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J Agric Food Chem 2007;55:10641-10648.   DOI   ScienceOn
4 Yoon SH, Han EJ, Sung JH, Chung SH. Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol Pharm Bull 2007;30:2196-2200.   DOI   ScienceOn
5 Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 2002;25:743-747.   DOI   ScienceOn
6 Choo MK, Park EK, Han MJ, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med 2003;69:518-522.   DOI   ScienceOn
7 Kevers C, Jacques P, Gaspar T, Thonart P, Dommes J. Comparative titration of ginsenosides by different techniques in commercial ginseng products and callus cultures. J Chromatogr Sci 2004;42:554-558.   DOI   ScienceOn
8 Zhou W, Li J, Li X, Yan Q, Zhou P. Development and validation of a reversed-phase HPLC method for quantitative determination of ginsenosides Rb1, Rd, F2, and compound K during the process of biotransformation of ginsenoside Rb1. J Sep Sci 2008;31:921-925.   DOI   ScienceOn
9 Sha DX, Zhang ML. Determination of notoginsenoside R1, ginsenoside Rg1 and Rb1 in Radix Notoginseng and its preparation by HPLC-ELSD. Zhongguo Zhong Yao Za Zhi 2005;30:112-115.
10 Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 1997;63:436-440.   DOI   ScienceOn
11 Park CS, Yoo MH, Noh KH, Oh DK. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19.   DOI   ScienceOn
12 Choi JR, Hong SW, Kim YR, Jang SE, Kim NJ, Han MJ, Kim DH. Metabolic activities of ginseng and its constituents, ginsenoside Rb1 and Rg1, by human intestinal microflora. J Ginseng Res 2011;35:301-307.   DOI   ScienceOn
13 Quan LH, Piao JY, Min JW, Kim HB, Kim SR, Yang DU, Yang DC. Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by Leuconostoc mesenteroides DC102. J Ginseng Res 2011;35:344-351.   DOI   ScienceOn
14 Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998;246:725-730.   DOI   ScienceOn
15 Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693.   DOI   ScienceOn
16 Wang CZ, Kim KE, Du GJ, Qi LW, Wen XD, Li P, Bauer BA, Bissonnette MB, Musch MW, Chang EB, Yuan CS. Ultra-performance liquid chromatography and time-of-flight mass spectrometry analysis of ginsenoside metabolites in human plasma. Am J Chin Med 2011;39:1161-1171.   DOI   ScienceOn
17 Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1996;62:453-457.   DOI   ScienceOn
18 Lee JY, Shin JW, Chun KS, Park KK, Chung WY, Bang YJ, Sung JH, Surh YJ. Antitumor promotional effects of a novel intestinal bacterial metabolite (IH-901) derived from the protopanaxadiol-type ginsenosides in mouse skin. Carcinogenesis 2005;26:359-367.
19 Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K. Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. Chem Pharm Bull (Tokyo) 1989;37:1279-1281.   DOI   ScienceOn
20 Paek IB, Moon Y, Kim J, Ji HY, Kim SA, Sohn DH, Kim JB, Lee HS. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos 2006;27:39-45.   DOI   ScienceOn
21 Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration: measurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-249.   DOI   ScienceOn
22 Xu ZX, Xiao HB, Wang JN, Liang XM. Analysis of ginsenosides by high performance liquid chromatography/mass spectrometry/mass spectrometry(LC/MS/MS). Se Pu 2000;18:521-524.
23 Li L, Sheng Y, Zhang J, Wang C, Guo D. HPLC determination of four active saponins from Panax notoginseng in rat serum and its application to pharmacokinetic studies. Biomed Chromatogr 2004;18:849-856.   DOI   ScienceOn
24 Gu Y, Wang GJ, Sun JG, Jia YW, Xie HT, Wang W. Quantitative determination of ginsenoside Rh2 in rat biosamples by liquid chromatography electrospray ionization mass spectrometry. Anal Bioanal Chem 2006;386:2043-2053.   DOI
25 Tachikawa E, Kudo K. Proof of the mysterious efficacy of ginseng: basic and clinical trials: suppression of adrenal medullary function in vitro by ginseng. J Pharmacol Sci 2004;95:140-144.   DOI   ScienceOn
26 Noh KH, Son JW, Kim HJ, Oh DK. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 2009;73:316-321.   DOI   ScienceOn
27 Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull (Tokyo) 1991;39:2357-2361.   DOI   ScienceOn
28 Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31:1065-1071.   DOI   ScienceOn