• Title/Summary/Keyword: electrorefining

Search Result 62, Processing Time 0.029 seconds

R&D ACTIVITIES FOR PARTITIONING AND TRANSMUTATION IN KOREA

  • Yoo, Jae-Hyung;Song, Tae-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.150-164
    • /
    • 2004
  • According to the Korean long-term plan for nuclear technology development, KAERI is conducting a few R&D projects related to the proliferation-resistant back-end fuel cycle. The R&D activities for the back-end fuel cycle are reviewed in this work, especially focusing on the study of the partitioning and transmutation(P&T) of long-lived radionuclides. The P&T study is currently being carried out in order to develop key technologies in the areas of partitioning and transmutation. The partitioning study is based on the development of pyroprocessing such as electrorefining and electrowinning because they can be adopted as proliferation-resistant technologies in the fuel cycle. In this study, various behaviors of the electrodeposition of uranium and rare earth elements in the LiCl-KCl electrorefining system have been examined through fundamental experimental work. As for the transmutation system, KAERI is studying the HYPER (HYbrid Power Extraction Reactor), a kind of subcritical reactor which will be connected with a proton accelerator. Up to now, a conceptual study has been carried out for the major elemental systems of the subcritical reactor such as core, transuranic fuel, long-lived fission product target, and the Pb-Bi cooling system, etc. In order to enhance the transmutation efficiency of the transuranic elements as well as to strengthen the reactor safety, the reactor core was optimized by determining its most suitable subcriticality, the ratio of height/diameter, and by introducing the concepts of optimum core configuration with a transuranic enrichment as well as a scattered reloading of the fuel assemblies.

  • PDF

Recovery of High Purity Sn by Multi-step Reduction of Sn-Containing Industrial Wastes (건식 환원 공정을 이용한 고순도 주석 회수)

  • Lee, Sang-Ro;Lee, Man-Seung;Kim, Hyun You
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.11-15
    • /
    • 2015
  • In order to develop a technology for the recovery of pure tin from the Sn containing industrial wastes (SIWs), a process consisted of high temperature reduction and electrorefining was investigated. The tin which exists as oxide in SIWs was successfully reduced by two consecutive high temperature treatments and 92.7% of the tin was recovered. The purity of the tin thus obtained was increased to 99.87% by electrorefining. By applying the results obtained in this work, a commercial process can be developed to produce pure tin metals from domestic spent resources, which can reduce the amount of tin imported from abroad.

SELECTIVE REDUCTION OF ACTIVE METAL CHLORIDES FROM MOLTEN LiCl-KCl USING LITHIUM DRAWDOWN

  • Simpson, Michael F.;Yoo, Tae-Sic;Labrier, Daniel;Lineberry, Michael;Shaltry, Michael;Phongikaroon, Supathorn
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.767-772
    • /
    • 2012
  • In support of optimizing electrorefining technology for treating spent nuclear fuel, lithium drawdown has been investigated for separating actinides from molten salt electrolyte. Drawdown reaction selectivity is a major issue that requires investigation, since the goal is to remove actinides while leaving the fission products and other components in the salt. A series of lithium drawdown tests with surrogate fission product chlorides was run to obtain selectivity data with non-radioactive salts, develop a predictive model, and draw conclusions about the viability of using this process with actinide-loaded salt. Results of tests with CsCl, $LaCl_3$, $CeCl_3$, and $NdCl_3$ are reported here. Equilibrium was typically achieved in less than 10 hours of contact between lithium metal and molten salt under well-stirred conditions. Maintaining low oxygen and water impurity concentrations (<10 ppm) in the atmosphere was observed to be critical to minimize side reactions and maintain stable salt compositions. An equilibrium model has been formulated and fit to the experimental data. Good fits to the data were achieved. Based on analysis and results obtained to date, it is concluded that clean separation between minor actinides and lanthanides will be difficult to achieve using lithium drawdown.

Recovery of Tin from Tin Oxide Resulted from Glass Manufacturing Process by Pyrometallurgy (유리생산공정 폐주석산화물에서 건식제련에 의한 주석회수기술)

  • Lee, Sang-Ro;Kim, Sang-Yeol;Lee, Man-Seung;Park, Man-Bok
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.23-28
    • /
    • 2015
  • Most of the domestic need for tin rely on imports. In this work, a pyrometallurgical process was investigated to recover pure tin from the tin oxides in tin bath which results from the production of flat glass and LCD panel. From the results on the effect of reaction temperature, the highest recovery percentage of tin was obtained at $1350^{\circ}C$. The recovery percentage of tin was improved to 88% by employing the first and second smelting step. Electrorefining of the crude tin thus obtained led to pure tin with purity higher than 99.9%.

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

Effect of Rare Earth Elements on Uranium Electrodeposition in LiCl-KCl Eutectic Salt (LiCl-KCl 공융염에서 우라늄 전착거동에 대한 희토류 원소들의 영향)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the elctrorefining process was investigated by considering the separation factors with respect to $UCl_3$ and $CeCl_3/UCl_3$ ratio.