• Title/Summary/Keyword: electronic structures

Search Result 1,785, Processing Time 0.03 seconds

The interfaces between Alq3 and ZnO substrates with various orientations

  • Lee, Jeong-Han;Lee, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.343-343
    • /
    • 2011
  • ZnO has been introduced as one of the good candidates for next generation opto-electronics. Recently, ZnO is known to be suitable for the transparent electrode in organic solar cells and light emitting devices. The contact with n-type organic material has been studied due to the n-type properties of ZnO. However, the surface of ZnO has shown different electronic property with respect to its surface orientation. Therefore, it is presumed that there are differences in the interfacial electronic structures between organic materials and ZnO with different orientation. Therefore, it is required to classify the interfacial electronic structures according to the surface orientation of ZnO. In this study, we measured the interfacial electronic structures between the ZnO substrate having various orientations and a typical n-type organic material, tris-(8-hydroxyquinoline) aluminum (Alq3). In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We found the changes in the electronic structures with respect to the orientation of ZnO substrate and it could be used to improve the contact between ZnO and Alq3.

  • PDF

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.317-327
    • /
    • 2014
  • In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.

Electronic Structures of Graphene on Ru(0001) : Scanning Tunneling Spectroscopy Study

  • Jang, Won-Jun;Jeon, Jeung-Hum;Yoon, Jong-Keon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.307-307
    • /
    • 2011
  • Graphene is the hottest topic in condensed-matter physics due to its unusual electronic structures such as Dirac cones and massless linear dispersions. Graphene can be epitaxially grown on various metal surfaces with chemical vapor deposition processes. Such epitaxial graphene shows modified electronic structures caused by substrates. Here, local geometric and electronic structures of graphene grown on Ru(0001) will be presented. Scanning tunneling microscopy (STM) and spectroscopy (STS) was used to reveal energy dependent atomic level topography and position-dependent differential conductance spectra. Both topography and spectra show variations from three different locations in rippled structures caused by lattice mismatch between graphene and substrate. Based on the observed results, structural models for graphene on Ru(0001) system were considered.

  • PDF

First-Principle Study on Structural and Electronic Properties of zigzag Carbon Nanotubes

  • Lee, Yong ju;Park, Jejune
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.446-449
    • /
    • 2014
  • Carbon Nanotube (CNT) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. In this work, we considered the different atomic configurations by maintaining their symmetries, but changing all the inequivalent bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Our results suggest all the significant couplings between electronic and geometric structures in CNTs.

  • PDF

Structures of Ultrathin Copper Nanowires Encapsulated in Carbon Nanotubes (탄소나노튜브 속에 성장된 구리 나노와이어의 구조)

  • Choi, Won-Young;Kang, Jeong-Won;Song, Ki-Oh;Hwnang, Ho-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.294-299
    • /
    • 2003
  • We have investigated the structures of copper nanowires encapsulated in carbon nanotubes using a structural optimization process applied to the steepest descent method. The results showed that the stable morphology of the cylindrical ultrathin copper nanowires in carbon nanotubes is multishell packs consisted of coaxial cylindrical shells. As the diameter of copper nanotubes increased, the encapsulated copper nanowires have the face centered cubic structure as the bulk. Both the semiclassical orbits in a circle and the circular rolling of a triangular network can explain the structures of ultrathin multishell copper nanowires encapsulated in carbon nanotubes.

  • PDF

Interfacial electronic structures of metallic nanoparticles on bare- and functionalized-Au nanoisland templates, and on transition metal oxide supports

  • Son, Yeong-Gu;Pradhan, Debabrata;Leung, K.T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.348-348
    • /
    • 2011
  • We present the interfacial electronic structures of electrodeposited Cu and Fe on bare and 1,4-phenylene diisocyanide (PDI)-functionalized Au nanoisland templates (NITs), and Au and Ag nanoparticles on transition metal oxide supports. Our discussion is based on the depth-profiling X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM).

  • PDF

Electronic Structures and Noncollinear Magnetic Properties of Structurally Disordered Fe

  • Park, Jin-Ho;Min, B.I.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The magnetic properties of amorphous Fe were investigated by examining the electronic structures of structurally disordered Fe systems generated from crystalline bcc and fcc Fe using a Monte-Carlo simulation. As a rst principles band method, the real space spin-polarized tight-binding linearized-mun-tin-orbital recursion method was used in the local spin density approximation. Compared to the crystalline system, the electronic structures of the disordered systems were characterized by a broadened band width, smoothened local density of states, and reduced local magnetic moment. The magnetic structures depend on the short range configurations. The antiferromagnetic structure is the most stable for a bcc-based disordered system, whereas the noncollinear spin spiral structure is more stable for a fcc-based system.

Mixed-Island Formation and Electronic Structure of Metallo-Porphyrin Molecules on Au(111)

  • Kim, Ho-Won;Jeong, Gyeong-Hun;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.303-303
    • /
    • 2011
  • Orderings and electronic structures of organic molecules on metal substrates have been studied due to possible applications in electronic devices. In molecular systems, delocalized pi-electrons play important roles in the adsorption behaviors and electronic structures. We studied the adsorption and electronic structures of Co-Porphyrin molecules on Au(111) using scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperature. Molecules form closely packed two-dimensional islands on Au(111) surface with two different types, having different shape evolutions in our energy-dependent STM observations. The Kondo resonance state, occurred by spin exchange interaction between the Co center atom and conduction electrons in the metal substrate, was observed in one type, while it was absent in the other type in scanning tunneling spectroscopy measurements. Possible origins of two molecular shapes will be discussed.

  • PDF

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

In situ photoemission and inverse photoemission studies on the interfacial electronic structures of organic materials (In situ 광전자분광/역광전자분광 분석을 이용한 유기물 계면의 전자구조 연구)

  • Yi, Yeonjin
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.4-11
    • /
    • 2015
  • During last two decades, remarkable progresses have been made in organic electronic devices, such as organic light-emitting device, organic photovoltaic and many other applied devices. Many of these progress are attributed to the multilayered/heterojunction device architectures, which could be achieved from the control of "interfacial energetics". In that sense, the interfacial electronic structures in organic electronic devices have a decisive role in device performance. However, the prediction of the interfacial electronic structures from each separate material is not trivial. Many complex phenomena occur at the interface and these can be only understood from thorough measurements on interfacial electronic structures in situ. Photoemission and inverse photoemission spectroscopy have been known as the most proper measurement tools to analyze these interfacial electronic structures. In this review, the basic principles of (inverse) photoemission spectroscopy and typical measurement results on organic/inorganic interfaces are introduced.