First-Principle Study on Structural and Electronic Properties of zigzag Carbon Nanotubes

  • Published : 2014.03.21

Abstract

Carbon Nanotube (CNT) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. In this work, we considered the different atomic configurations by maintaining their symmetries, but changing all the inequivalent bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Our results suggest all the significant couplings between electronic and geometric structures in CNTs.

Keywords