• Title/Summary/Keyword: electronic current

Search Result 6,501, Processing Time 0.037 seconds

The Realization of a Single-Phase Parallel Active Power Filter to Eliminate Harmonics of Source Current Generated by Nonlinear Loads (비선형부하에 의해 발생한 전원 전류의 고조파를 제거하기 위한 단상 병렬형 Active Power Filter의 구현)

  • Jang, Mok-Soon;Lee, Hu-Chan;Kim, Sang-Hoon;Park, Jong-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.220-221
    • /
    • 2006
  • This paper presents a single-phase parallel active power filter with an analog control circuit to eliminate for harmonic source currents generated by nonlinear loads. The proposed system removes the harmonic source currents by injecting a compensation current that is 180' out of phase with the load harmonic current. The detection of the load harmonics is realized by a simple new structure, referred to the Notch Filter with GIC (Generalized Impedance Converter), which has higher Q than existing harmonic detecters and a simpler structure. The compensation current is obtained using the proposed harmonic detection circuit, DC-Link voltage, and output current of the full-bridge inverter controlled current mode PWM controller. The operation of the proposed system is verified experimentally.

  • PDF

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

Influence of the Internal Current on the Sintering Behavior of ZnO Ceramics Sintered by PCS Method

  • Misawa, Tatsuya;Shikatani, Noboru;Kawakami, Yuji;Enjoji, Takashi;Ohtsu, Yasunori;Fujita, Hiroharu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.538-539
    • /
    • 2006
  • The influence of the internal current for the ZnO ceramics on the sintering behavior by pulse current sintering (PCS) method was investigated. To clear the dependence of inner current on the sintering behavior of ZnO ceramics, direct measurement of electric resistance of ZnO specimen under sintering by SPS device was carried out. It was observed that electric resistance of specimen decreases with increase in the temperature. The electric resistance begins to decrease from the low temperature of $200^{\circ}C$. The internal structure of sintered ZnO ceramics changed by the control of the internal current in the specimen using $Al_2O_3$ plate.

  • PDF

Design and Characteristic Analysis of Wound Rotor Synchronous Motor for ISG according to Field Current Combination (계자전류 조합에 따른 ISG용 권선형 동기전동기의 설계 및 특성분석)

  • Kwon, Sung-Jun;Lee, Dongsu;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1228-1233
    • /
    • 2013
  • In this paper, design of Wound Rotor Synchronous Motor(WRSM) for Integrated Starter and Generator(ISG) is performed based on Finite Element Analysis(FEA). WRSM can control not only magnitude and phase of armature current, but also field current. Thus, various control methods can be considered. Since driving characteristic of WRSM depends greatly on the control method, characteristic analysis accoding to possible driving current combination is reguired. Especially in high speed region, the control method that reduces unnecessary d-axis current by reducing field current is possible, which is similar to field weakening control. By the current combination reducing field and d-axis current, the design minimizing copper loss to increase efficiency on identical driving point is possible. In this paper, high efficient WRSM is designed applying the current combination which can minimize copper loss on each driving point.

Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor (단상유도전동기의 돌입전류저감을 위한 제어기 설계)

  • Park, Su-Kang;Baek, Hyung-Lae;Lee, Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

Direct Current (DC) Bias Stress Characteristics of a Bottom-Gate Thin-Film Transistor with an Amorphous/Microcrystalline Si Double Layer

  • Jeong, Tae-Hoon;Kim, Si-Joon;Kim, Hyun-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.197-199
    • /
    • 2011
  • In this paper, the bottom-gate thin-film transistors (TFTs) were fabricated with an amorphous/microcrystalline Si double layer (DL) as an active layer and the variations of the electrical characteristics were investigated according to the DC bias stresses. Since the fabrication process of DL TFTs was identical to that of the conventional amorphous Si (a-Si) TFTs, it creates no additional manufacturing cost. Moreover, the amorphous/microcrystalline Si DL could possibly improve stability and mass production efficiency. Although the field effect mobility of the typical DL TFTs is similar to that of a-Si TFTs, the DL TFTs had a higher reliability with respect to the direct current (DC) bias stresses.

Fabrication of an HTS DC SQUID Electronic Gradiometer and it's application in NDE system (고온 초전도 Electronic Gradiometer의 제작과 NDE system 에의 응용)

  • Kim, Jin-Young;Han, Sung-Gun;Kang, Joon-Hee;Lee, Eun-Hong;Song, I-Hun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.120-123
    • /
    • 1999
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test material. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

A Design of Charge Pump with Up/Down Current Mismatch Compensation for PHS Application (Up/Down Current Mismatch 보상 기능을 추가한 Charge Pump 회로의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Ko, Dong-Hyun;Pu, Young-Gun;Lee, Kang-Yoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.472-473
    • /
    • 2008
  • This paper presents a charge pump used in frequency synthesizer for PHS application. The up/down current mismatch of charge pump has a critical effect on the phase noise and spur performance in frequency synthesizer. Therefore, the mismatch compensation scheme is proposed in this paper. And, the measurement results show that the mismatch can be reduced below 5 %.

  • PDF

Design and Construction of an HTS DC SQUID Electronic Gradiometer NDE system

  • Kim, J.Y.;Han, S.G.;Kang, J.H.;Lee, E.H.;Song, I.H.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.115-119
    • /
    • 2000
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test piece. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

Highly power-efficient and reliable light-emitting diode backlight driver IC for the uniform current driving of medium-sized liquid crystal displays

  • Hong, Seok-In;Nam, Ki-Soo;Jung, Young-Ho;Ahn, Hyun-A;In, Hai-Jung;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.73-82
    • /
    • 2012
  • In this paper, a light-emitting diode (LED) backlight driver integrated circuit (IC) for medium-sized liquid crystal displays (LCDs) is proposed. In the proposed IC, a linear current regulator with matched internal resistors and an adaptive phase-shifted pulse-width modulation (PWM) dimming controller are also proposed to improve LED current uniformity and reliability. The double feedback loop control boost converter is used to achieve high power efficiency, fast transient characteristic, and high dimming frequency and resolution. The proposed IC was fabricated using the 0.35 ${\mu}m$ bipolar-CMOS-DMOS (BCD) process. The LED current uniformity and LED fault immunity of the proposed IC were verified through experiments. The measured power efficiency was 90%; the measured LED current uniformity, 97%; and the measured rising and falling times of the LED current, 86 and 7 ns, respectively. Due to the fast rising and falling characteristics, the proposed IC operates up to 39 kHz PWM dimming frequency, with an 8-bit dimming resolution. It was verified that the phase difference between the PWM dimming signals is changed adaptively when LED fault occurs. The experiment results showed that the proposed IC meets the requirements for the LED backlight driver IC for medium-sized LCDs.