• Title/Summary/Keyword: electron transport system

Search Result 147, Processing Time 0.029 seconds

Enhancing the Efficiency of Core/Shell Nanowire with Cu-Doped CdSe Quantum Dots Arrays as Electron Transport Layer (구리 이온 도핑된 카드뮴 셀레나이드 양자점 전자수송층을 갖는 나노와이어 광전변환소자의 효율 평가)

  • Lee, Jonghwan;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.94-98
    • /
    • 2020
  • The core/shell of nanowires (NWs) with Cu-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We presented CdSe with Cu2+ dopants that were synthesized by a colloidal process. An improvement of the recombination barrier, due to shell supplementation with Cu-doped CdSe quantum dots. The enhanced cell steady state was attributable to TiO2 with Cu-doped CdSe QD supplementation. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 arrays was investigated to represent the merit of core/shell as an electron transport layer in effective devices.

Electron Microscopic Studies on Cellular Characteristics and Transport Systems in Tight Epithelia (Tight epithelia의 세포특성과 수송체계에 관한 전자현미경적 연구)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 1996
  • This study analysed the transport properties of bladder mucosa known as the typical system of 'tight epithelia' by using TEM observation with both rapid freeze-fracture electron microscopy and thin-section method and mainly analysed the cellular characteristics of turtle bladder epithelial cells. The bladder epithelium, like other tight epithelia, consists of a heterogenous population of cells. The majority of the mucosal cells are the granular cells and may function primarily in the process of active $Na^+$ reabsorption in turtle bladder. The remaining two types of cells are rich in mitochondria and is believed to be res-ponsible for a single major transport system, namely, $H^+$ transport by A-type of cell and urinary $HCO_{3}^-$ secretion by B-type of cell. As viewed in freeze-fracture electron micrograph, the tight junctions form a continuous tight seal around the epithelial cells, thus restricting diffusion in tight epithelia. In addition, the apical surface membranes have a population of rod-shaped intramembranous particles (IMPs). It is believed that these IMPs probably represent the components of the proton pump. However, it is likely that these characteristics of the apical transporter remain to be clarified in tight epithelial cells.

  • PDF

Streptomyces Cytochrome P450 and Electron Transport System (방선균 시토크롬 P450와 전자전이시스템)

  • Sohng, Jae-Kyung;Oh, Tae-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • Cytochrome P450 enzymes which require the supply of electrons from NAD(P)H have a great biotechnological impact as they catalyze valuable reactions on a vast variety of substrates. However, very limited biotechnological application has been reported so far due to their functional complexity, limited stability (instability) and, in most cases, low catalytic activity. In this present review, we introduce some possibilities for improving their defect by exploring electron transport system and substrate flexibility in field of Streptomyces cytochrome P450.

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

Effetcs of Hexavalent Chromium on the Mitochondrial Electron Transport System in Mouse Liver (생쥐 간세포 Mitochondria의 전자전달계에 미치는 Chromium(VI)의 영향)

  • Boo, Moon-Jong;Yoo, Chang-Kyu;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.17 no.1
    • /
    • pp.29-46
    • /
    • 1987
  • To study hexavalent chromium effects on mitochondrial electron transport, the activities of electron transport enzymes and conformational change of mitochondria treated with $40{\mu}M$ of sodium dichromate ($Na_{2}Cr_{2}O_{7}\;2H_{2}O$) were investigated. And so were those of liver mitochondria isolated from mouse intraperitoneally injected with sodium dichromate, 40mg per kg body weight. On both treatment with chromium(VI), the activities of electron transfer enzymes (Complex I and IV) were increased to some extent and the ultrastructural transformation of mitochondria from a condensed to an orthodox conformation was inhibited under State IV respiration. These results represent' inhibitory effect of hexavalent chromium on electron transport without inhibiting electron transfer enzymes (Complex I and IV) in mitochondria. On intraperitoneal treatment with hexavalent chromium as sodium dichromate and trivalent chromium as chromic chloride, containing 37.5 mg of chromium per kg body weight, respectively, the activities of electron transfer enzymes of liver isolated from mouse with chromium(VI) was reduced, but that with chromium(III) was not affected. And with chromium(VI), all mice after 12 hours of treatment died, only after 6 hours survived. With chromium(III), however, all survived. This indicates that hexavalent chromium is more toxic than trivalent chromiumin mouse liver.

  • PDF

EFFECTS OF NOVEL DITHIOL MALONATE DERIVATIVES ON LIVER LIPID PEROXIDATION AND ON MICROSOMAL ELECTRON TRANSPORT SYSTEM

  • Park, Keun-Hee;Lee, Jong-Wook
    • Toxicological Research
    • /
    • v.3 no.2
    • /
    • pp.97-110
    • /
    • 1987
  • The effects of 5 novel hepatotrophic agents, dithiol malonate derivatives (DMDs; DMD1-DMD5), on the liver microsomal lipid peroxidation induced by carbon tetrachloride $(CCl_4)$ and the correlations with the changes of microsomal electron transport system were investigated. All DMDs were found to inhibit the lipid peroxidation induced by $CCl_4$ in mice and rats as well in vitro liver microsomal system. Therefore, each DMD seemed to have direct mode of action on liver microsomes to inhibit the lipid peroxidation. As an ex vivo study, the induced lipid peroxidation by $CCl_4$ and the changes in electron transport system were determined with liver microsomes obtained from rats chronically treated with DMDs for 7 days. The induced lipid peroxide contents in liver microsomal system were lower in DMD1, DMD2 and DMD3 treated group, but higher in DMD4 and DMD5 group when compared to the control group. Cyt. p.450 contents in the microsomes were decreased by the treatment with DMD1, DMD2 and DMD3, but increased significantly by DMD4 with great extent and by DMD5 with less extent. The cyt. p-450 isozymes induced by treatment of DMD4 and DMD5 were identified as 3-methylcholanthrene (MC) type. The NADPH cyt. -C reductase activities of the microsomes treated with DMD1, DMD2, DMD4 and DMD5 were increased in the range of around 20% to 50%, but decreased with DMD3, All DMDs increased dyt. $-b_5$ content and did not alter NAdH-cyt, $-b_5$ reductase activities in the microsomes. In summary, the 5 novel hepatotrophic agents (DMDs) markedly protected against lipid peroxidation induced by $CCl_4$ in vivo and in vitro possibly through the mechanism of direct action on the liver microsomes. The degree of inhibition produced by DMDs on lipid peroxidation induced by $CCl_4$ seemed to coincide rather with cyt. p-450 contents than with other components of liver microsomal electron transport system including NADPH-cyt, -C reductase.

  • PDF

Effects of Light and Photosynthetic Electron Transport System on the Generation of Singlet Oxygen ($^1$O$_2$) in Ginseng Thylakoid Membrane (인삼 틸라코이드에서 Singlet Oxygen($^1$O$_2$) 생성에 미치는 전자전달계의 영향)

  • Yang, Deok-Cho;Chae, Quae;Lee, Sung-Jong;Kim, Yong-Hae;Kang, Young-Hee
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • In order to Investigate the mechanism of the leaf-burning disease of ginseng (Panax ginseng C.A. Meyer), studies on the generation of singlet oxygen (1O2) and the photooxidation of the pigments were carried out in comparison with the ones of soybean (G1ycine max L). The studies were mainly focalized on the effects of light intensity, light intensity, inhibitor and electron donor/acceptor of the Photosynthetic electron transport system. When we measured the amounts of 1O2 generated in the thylakoids of ginseng and soybean by the irradiation of light (300 w/m2) as a function its time. It was identified that a higher amount of 1O2 was formed in the ginseng thylakoid than the case of soybean. A generation ratio of lO2 between ginseng and soybean sltbstantially identical in the range of light intensities 50∼150w/m2 However much higher amount of 1O2 was generated in ginseng by irradiation of strong intensity of light (200 500w/m2). Wave length dependency on the generation of 1O2 and the pigment photooxidation was observed on ginseng thylakoids; red light (600-700 nm) gave a maximum effect in the contrast with blur green light (400-60 nm). When the ginseng thylalioid was treated with the electron donor (Mn2+) and acceptors (DCPIP, FeCy) of the photosynthetic electron transport system. a drastic inhibition of 1O2 generation was observed. However, treatment with its inhibitors (DCMU, KCW) activated 1O2 generation. An interesting fact that an electron donor or acceptor of the photosystem II(P680) Inhibited 1O2 generation, suggests an intimate relationship between 1O2 generation and photosystem II.

  • PDF

The magnetic properties of optical Quantum transitions of electron-piezoelectric potential interacting systems in CdS and ZnO

  • Lee, Su Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in CdS and ZnO. In this study, we investigate electron confinement by square well confinement potential in magnetic field system using quantum transport theory(QTR). In this study, theoretical formulas for numerical analysis are derived using Liouville equation method and Equilibrium Average Projection Scheme (EAPS). In this study, the absorption power, P (B), and the Quantum Transition Line Widths (QTLWS) of the magnetic field in CdS and ZnO can be deduced from the numerical analysis of the theoretical equations, and the optical quantum transition line shape (QTLS) is found to increase. We also found that QTLW, ${\gamma}(B)_{total}$ of CdS < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B<25 Tesla.

Effects of Lead on the Ultrastructure ana the Electron Transport System of Mitochondria of Mouse Kidney (납(Pb)이 생쥐 신장세포에 미토콘드리아 미세구조 및 전자전달계에 미치는 영향)

  • Lim, Seung-Sub;Yoo, Chang-Kyu;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.17 no.2
    • /
    • pp.55-71
    • /
    • 1987
  • To investigate the effects of lead on the electron transport system and ultrastructure of mouse kidney mitochondria, various lead acetate concentrations were treated in vitro and respiration rate, enzyme activities were measured. Ultrastructural changes at state IV respiration were also observed. To compare with in vivo experiments, mouse were injected intraperitoneally of 100 mg lead acetate per kg body weight and state IV respiration rate and enzyme activities were measured. Ultrastructure of renal proximal tubular cells were also observed. In in vitro treatement, decreased state IV respiration, decreased enzyme activities, ruptured membranes and inhibition of condensed to orthodox transformation were observed. In in vivo treatment, decreased state IV respiration and decreased enzyme activities were observed after 24 hrs of i.p. injection. Cytochrome c oxidase activity showed twice the inhibition compared to NADH-CoQ reductase activity at 24 hrs. Continuous decreased state IV respiration was observed after 48 and 72 hrs of injection, however, the enzyme activities were increased to control level. Lead-protein complex which probably inhibits the toxic effects of lead appeared. To conclude, dominant effect of lead on the electron transport system appeared at cytochrome c oxidase activity, and the increased enzyme activities may be a result of appearance of lead-protein complex.

  • PDF

Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized Electron and Hole transport layers

  • Khan, M.A.;Xu, Wei;Wei, Fuxiang;Bai, Yu;Jiang, X.Y.;Zhang, Z.L.;Zhu, W.Q.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1103-1107
    • /
    • 2007
  • Highly efficient organic electroluminescent devices (OLEDs) based on 4,7- diphenyl-1, 10- phenanthroline (BPhen) as the electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum ($Alq_3$) as the emission layer (EML) and N,$\acute{N}$-bis-[1-naphthy(-N,$\acute{N}$diphenyl-1,1´-biphenyl-4,4´-diamine)] (NPB) as the hole transport layer (HTL) were developed. The typical device structure was glass substrate/ ITO/ NPB/$Alq_3$/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of $5\;{\times}\;10^{-4}\;cm^2\;V^{-1}\;s^{-1}$, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of $1361\;cd/m^2$ at a current density of $20\;mA/cm^2$. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.

  • PDF