Browse > Article

Streptomyces Cytochrome P450 and Electron Transport System  

Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.3, 2010 , pp. 227-234 More about this Journal
Abstract
Cytochrome P450 enzymes which require the supply of electrons from NAD(P)H have a great biotechnological impact as they catalyze valuable reactions on a vast variety of substrates. However, very limited biotechnological application has been reported so far due to their functional complexity, limited stability (instability) and, in most cases, low catalytic activity. In this present review, we introduce some possibilities for improving their defect by exploring electron transport system and substrate flexibility in field of Streptomyces cytochrome P450.
Keywords
Cytochrome P450; electron transport system; ferredoxin; ferredoxin reductase; NAD(P)H; Streptomyces;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Shrestha, P., T.-J. Oh, and J. K. Sohng. 2008b. Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol. Lett. 30: 1101-1106.   DOI   ScienceOn
2 Gaisser, S., R. Lill, J. Staunton, C. Méndez, J. Salas, and P. F. Leadlay. 2002. Parallel pathways for oxidation of 14- membered polyketide macrolactones in Saccharopolyspora erythraea. Mol. Microbiol. 44: 771-781.   DOI   ScienceOn
3 Hutchinson, C. R. 1998. Combinatorial biosynthesis for new drug discovery. Curr. Opin. Microbiol. 1: 319-329.   DOI   ScienceOn
4 Ioannides, C. and D. F. Lewis. 2004. Cytochromes P450 in the bioactivation of chemicals. Curr. Top. Med. Chem. 4: 1767-1788.   DOI   ScienceOn
5 Nelson, D. R., T. Kamataki, D. J. Waxman, F. P. Guengerich, R. W. Estabrook, R. Feyereisen, F. J. Gonzalez, M. J. Coon, I. C. Gunsalus, O. Gotoh. et al. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12: 1-51.   DOI   ScienceOn
6 O'Keefe, D. P. and P. A. Harder. 1991. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol. Microbiol. 5: 2099-2105.   DOI   ScienceOn
7 Cryle, M. J., N. J. Matovic, and J. J. De Voss. 2003. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids. Org. Lett. 5: 3341-3344.   DOI   ScienceOn
8 Trower, M. K., F. S. Sariaslani, and D. P. O'Keefe. 1989. Purification and characterization of a soybean flour-induced cytochrome P-450 from Streptomyces griseus. J. Bact. 171: 1781-1787.
9 Narhi, L. O. and A. J. Fulco. 1986. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P- 450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261: 7160-7169.
10 Nebert, D. W., M. Adesnik, M. J. Coon, R. W. Estabrook, F. J. Gonzalez, F. P. Guengerich, I. C. Gunsalus, E. F. Johnson, B. Kemper, W. Levin, I. Philips, R. Sato, and M. Waterman. 1987, The P450 gene superfamily: recommended nomenclature. DNA 6: 1-11.   DOI   ScienceOn
11 Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008a. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562.   DOI   ScienceOn
12 Xue, Y., D. Wilson, L. Zhao, H. Liu, and D. H. Sherman. 1998. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5: 661-667.   DOI   ScienceOn
13 Ullah, A. J. H., R. I. Murray, P. K. Bhattachuaryya, G. C. Wagner, and I. C. Gunsalus. 1990. Protein components of a cytochrome P-450 linalool 8-methyl hydroxylase. J. Biol. Chem. 265: 1345-1351.
14 Warman, A. J., O. Roitel, R. Neeli, H. M. Girvan, H. E. Seward, S. A. Murray, K. J. McLean, M. G. Joyce, H. Toogood, R. A. Holt, D. Leys, N. S. Scrutton,and A. W. Munro. 2005. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochem. Soc. Trans. 33: 747-753.   DOI   ScienceOn
15 Werck-Reichhart, D. and R. Feyereisen. 2000. Cytochromes P450: a success story. Genome Biol. 11: REVIEWS3003.1-3003.9.
16 Roberts, G. A., G. Grogan, A. Greter, S. L. Flitsch, and N. J. Turner. 2002. Identification of a new class of cytochrome P450 from a Rhodococcus sp. J. Bacteriol. 184: 3898-3908.   DOI   ScienceOn
17 Shafiee, A. and C. R. Hutchinson. 1988. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J. Bacteriol. 170: 1548-1553.
18 Shah, S., Q. Xue, L. Tang, J. R. Carney, M. Betlach, and R. McDaniel. 2000. Cloning, characterization and heterologous expression of a polyketide synthase and P-450 oxidase involved in the biosynthesis of the antibiotic oleandomycin. J. Antibiot. (Tokyo) 53: 502-508.   DOI   ScienceOn
19 Shrestha, P., T.-J. Oh, N. P. Niraula, K. Liou, J. C. Yoo, and J. K. Sohng. 2010. Characterization of CYP166B1 and its electron transfer system in Streptomyces peucetius var. caesius ATCC27952. Enzyme Microb. Technol. 46: 372-377.   DOI   ScienceOn
20 Podust, L. M., H. Bach, Y. Kim, D. C. Lamb, M. Arase, D. H. Sherman, S. L. Kelly, and M. R. Waterman. 2004. Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Sci. 13: 255-268.   DOI   ScienceOn
21 Omura, T. and R. Sato. 1962. A new cytochrome in liver microsomes. J. Biol. Chem. 237: 1375-1376.
22 Porter, C. T., G. J. Bartlett, and J. M. Thornton. 2004. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32: D129-D133.   DOI
23 Raillard, S., A. Krebber, Y. Chen, J. E. Ness, E. Bermudez, R. Trinidad, R. Fullem, C. Davis, M. Welch, J. Seffernick, L. P. Wackett, W. P. Stemmer, and J. Minshull. 2001. Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem. Biol. 8: 891-898.   DOI   ScienceOn
24 Rix, U., C. Fischer, L. L. Remsing, and J. Rohr. 2002. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep. 19: 542-580.   DOI   ScienceOn
25 Chun, Y. J., T. Shimada, R. Sanchez-Ponce, M. V. Martin, L. Lei, B. Zhao, S. L. Kelly, M. R. Waterman, D. C. Lamb, and F. P. Guengerich. 2007. Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5- catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J. Biol. Chem. 282: 17486-17500.   DOI
26 Parajuli, N., D. B. Basnet, H. C. Lee, J. K. Sohng, and K. Liou. 2004. Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch. Biochem. Biophys. 425: 233-241.   DOI   ScienceOn
27 Peterson, J. A., J. Y. Lu, J. Griesselsoder, S. Graham-Lorence, C. Carmona, F. Witney, and M. C. Lorence. 1992. Cytochrome P-450terp. Isolation and purification of the protein and cloning and sequencing of its operon. J. Biol. Chem. 267: 14193-14203.
28 Mueller, R., O. Asperger, and H. P. Kleber. 1989. Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus. Biomed. Biochim. Acta. 48: 243-254.
29 Kuznetsov, V. Y., E. Blair, P. J. Farmer, T. L. Poulos, A. Pifferitti, and I. F. Sevrioukova. 2005. The putidaredoxin reductase-putidaredoxin electron transfer complex: theoretical and experimental studies. J. Biol. Chem. 280: 16135-16142.   DOI
30 Carreras, C., S. Frykman, S. Ou, L. Cadapan, S. Zavala, E. Woo, T. Leaf, J. Carney, M. Burlingame, S. Patel, G. Ashley, and P. Licari. 2002. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycins. J. Biotechnol. 92: 217-228.   DOI   ScienceOn
31 Chung, L., L. Liu, S. Patel, J. R. Carney, and C. D. Reeves. 2001. Deletion of rapQONML from the rapamycin gene cluster of Streptomyces hygroscopicus gives production of the 16-O-desmethyl-27-desmethoxy analog. J. Antibiot. (Tokyo) 54: 250-256.   DOI   ScienceOn
32 Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems--biological variations of electron transport chains. Biochim. Biophys. Acta. 1770: 330-344.   DOI   ScienceOn
33 Guengerich, F. P. 2004. Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36: 159-197.   DOI   ScienceOn
34 Guengerich, F. P. and T. L. MacDonald. 1990. Mechanisms of cytochrome P-450 catalysis. FASEB J. 4: 2453-2459.
35 Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
36 Hunukoglu, I. and T. Gutfinger. 1989. cDNA sequence of adrenodoxin reductase. Identification of NADP-binding sites in oxidoreductases. Eur. J. Biochem. 180: 479-484.   DOI   ScienceOn
37 Joo, H., Z. Lin, and F. H. Arnold. 1999. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399: 670-673.   DOI   ScienceOn
38 Iffland, A., S. Gendreizig, P. Tafelmeyer, and K. Johnsson. 2001. Changing the substrate specificity of cytochrome c peroxidase using directed evolution. Biochem. Biophys. Res. Commun. 286: 126-132.   DOI   ScienceOn
39 Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. U S A. 96: 9509-9514.   DOI   ScienceOn
40 Johnson, D. C., D. R. Dean, A. D. Smith, and M. K. Johnson. 2005. Structure, function, and formation of biological ironsulfur clusters. Annu. Rev. Biochem. 74: 247-281.   DOI   ScienceOn
41 Katagiri, M., B. N. Ganguli, and I. C. Gunsalus. 1968. A soluble cytochrome P-450 functional in methylene hydroxylation. J. Biol. Chem. 243: 3543-3546.
42 Katz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97: 2557-2576.   DOI   ScienceOn
43 Dardas, A., G. Gal, M. Barrelle, G. Sauret-Ignazi, R. Sterjiades, and J. Pelmont. 1985. The demethylation of guaiacol by a new bacterial cytochrome P-450. Arch. Biochem. Biophys. 236: 585-592.   DOI   ScienceOn
44 Guengerich, F. P. 2001. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14: 611-650.   DOI   ScienceOn
45 Falquet, L., M. Pagni, P. Bucher, N. Hulo, C. J. Sigrist, K. Hofmann, and A. Bairoch. 2002. The PROSITE database, its status in 2002. Nucleic Acids Res. 30: 235-238.   DOI
46 Fouces, R., E. Mellado, B. Diez, and J. L. Barredo. 1999. The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology 145: 855-868.   DOI   ScienceOn
47 Grimm, A., K. Madduri, A. Ali, and C. R. Hutchinson. 1994. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151: 1-10.   DOI
48 Andersen, J. F., K. Tatsuta, H. Gunji, T. Ishiyama, and C. R. Hutchinson. 1993. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 32: 1905-1913.   DOI   ScienceOn
49 Bernhardt, R. 2006. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124: 128-145.   DOI   ScienceOn