• Title/Summary/Keyword: electron therapy

Search Result 308, Processing Time 0.026 seconds

A Newly Isolated Bacteriophage, PBES 02, Infecting Cronobacter sakazakii

  • Lee, Hyung Ju;Kim, Wan Il;Kwon, Young Chan;Cha, Kyung Eun;Kim, Minjin;Myung, Heejoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1629-1635
    • /
    • 2016
  • A novel bacteriophage, PBES 02, infecting Cronobacter sakazakii was isolated and characterized. It has a spherical head of 90 nm in diameter and a tail of 130 nm in length, and belongs to Myoviridae as observed under a transmission electron microscope. The major virion protein appears to be 38 kilodaltons (kDa) in size. The latent period of PBES 02 is 30 min and the burst size is 250. Infectivity of the phage remained intact after exposure to temperatures ranging from 4℃ to 55℃ for 1 h. It was also stable after exposure to pHs ranging from 6 to 10 for 1 h. The phage effectively removed contaminating Cronobacter sakazakii from broth infant formula. PBES 02 has a double-stranded DNA genome of 149,732 bases. Its GC ratio is 50.7%. Sequence analysis revealed that PBES 02 has 299 open reading frames (ORFs) and 14 tRNA genes. Thirty-nine ORFs were annotated, including 24 related to replication and regulation functions, 10 related to structural proteins, and 5 related to DNA packaging. The genome of PBES 02 is closely related to that of two other C. sakazakii phages, CR3 and CR8. Comparison of DNA sequences of genes encoding the major capsid protein revealed a wide geographical distribution of related phages over Asia, Europe, and America.

Effects of Alkylating Agent on the Sertoli Cell of the Seminiferous Tubule in the Mouse (Alkylating agent가 생쥐 정소의 Sertoli Cell에 미치는 영향)

  • Jung, Hae-Man;Cho, Kwang-Phil;Kim, Jeong-Sang
    • Applied Microscopy
    • /
    • v.26 no.3
    • /
    • pp.293-303
    • /
    • 1996
  • This paper aims to probe that the effect of high dose of cyclophosphamide to the Sertoli cells of the mouse was examined by transmission electron microscope. In the normal group, Sertoli cells contact each other around the basal aspect of the seminiferous tubule, forming numerous row of tight junction, blood-testis barrier. Sertoli cells contain smooth endoplasmic reticulum, well developed Golgi comples, a number of round mitochondria and microfilament. The cytoplasmic necrosis are observed from the 1-time treated group. In the 2-times treated group, smooth endoplasmic reticulum are more developed than normal group, but cisternae are partially dilated. In the 3-times treated group, the smooth endoplasmic reticulum are not developed. In the 2-times treated group, the inner membrane of the mitochondria are partially disrupted, and cristae are all disrupted in the 3-times treated group. The microfilaments are not observed in the all treated groups. According to the results above, it seems that smooth endoplasmic reticulum, mitochondria, and microfilament are disrupted by toxic effects of the cyclosphamide to the Sertoli cells of the mouse.

  • PDF

Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods (수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성)

  • Lee, Ki-Bum;Nam, Chunghee
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2019
  • Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.

Cytotoxic Activity of Biosynthesized Gold Nanoparticles with an Extract of the Red Seaweed Corallina officinalis on the MCF-7 Human Breast Cancer Cell Line

  • El-Kassas, Hala Yassin;El-Sheekh, Mostafa M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4311-4317
    • /
    • 2014
  • Background: Nano-biotechnology is recognized as offering revolutionary changes in the field of cancer therapy and biologically synthesized gold nanoparticles are known to have a wide range of medical applications. Materials and Methods: Gold nanoparticles (GNPs) were biosynthesized with an aqueous extract of the red alga Corallina officinalis, used as a reducing and stabilizing agent. GNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FT-IR) spectroscopy and tested for cytotoxic activity against human breast cancer (MCF-7) cells cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, considering their cytotoxicty and effects on cellular DNA. Results: The biosynthesized GNPs were $14.6{\pm}1nm$ in diameter. FT-IR analysis showed that the hydroxyl functional group from polyphenols and carbonyl group from proteins could assist in formation and stabilization. The GNPs showed potent cytotoxic activity against MCF-7 cells, causing necrosis at high concentrations while lower concentrations were without effect as indicated by DNA fragmentation assay. Conclusions: The antitumor activity of the biosynthesized GNPs from the red alga Corallina officinalis against human breast cancer cells may be due to the cytotoxic effects of the gold nanoparticles and the polyphenolcontent of the algal extract.

Contamination of the 6MV Linear Accelerator Photon Beam by Electrons (6MV 전자 선형 가속기 광자선의 전자오염)

  • Yoo, Meong-Jin;Kim, Dong-Won;Chung, Woon-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.1
    • /
    • pp.21-30
    • /
    • 1988
  • The 6 MV photon beam of a linear accelerator (Mevatron 67) was studied for electron contamination. The surface dose, attributable almost entirely to contamination electrons, has a linear dependence on field width for square fields and an inverse square dependence on distance from the bottom of the fixed head assembly. Build-up and surface dose measurements were taken with and without an acrylic blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the acrylic tray. The results are discussed in relation to skin sparing effect for radiation therapy patients. To achieve the maximum skin sparing effect, the selection of the optimum SSD and TSD is needed.

  • PDF

Malignant Small Cell Tumor of the Thoracopulmonary Region - Report of One Case and a Review of the Literature - (흉폐부위에 악성소세포종 -증례 보고-)

  • Choi, Myung-Sun;Chung, Kyoo-Byung
    • Radiation Oncology Journal
    • /
    • v.4 no.1
    • /
    • pp.63-66
    • /
    • 1986
  • The malignant small round cell tumor of the thoracopulmonary region was described by Askin in 1979 and called as Askin Tumor. The Askin tumor is a rare, arises from the soft tissues of the chest wall or peripheral lung which is predominantly in younger generation. Clinical and pathologic appearance were very similar to Ewing's sarcoma and rhabdomyosarcoma but when examined it by electron microscopy, there was some different in morphology. The tumor tended to recur locally and did not seem to disseminated widely but the median survival was only 8 months.

  • PDF

Effects of Mercuric Chloride on the Differentiation Cerebral Neuron of Chick Embryo ( I ) (계배 대뇌의 신경세포 분화에 미치는 수은의 영향 ( I ))

  • Kim, Saeng-Gon;Cho, Kwang-Phil;Kim, Jeong-Sang
    • Applied Microscopy
    • /
    • v.24 no.2
    • /
    • pp.26-36
    • /
    • 1994
  • To investigate the effects of mercuric chloride ($HgCl_2$) on the differentiation in the cerebral neuron of chick embryo 7 days, the ultrastructural changes in nerve cells injected with a various doses of mercuric chloride were observed with transmission electron microscope. The enzyme activity of the some dehydrogenases, and adenosine triphophate (ATP) were also analyzed. The results obtained are as follows; The ultrastructural changes in 1.0mg-injected group, the nuclear envelope were irregular, and the RER, Golgi complexes and mitochondria were not well developed. In 2.0mg-injected group, the nuclear envelope were partly destroyed or detached, and mitochondria were decreased in number and their cristae were destroyed, too. The RER and Golgi complexes were less developed than those of the normal groups. In general, the activities of dehydrogenases were declined by increasing the dose of mercuric chloride. Lactate dehydrogenase (LDH) activity fatted to below 85% of the normal group in 1.0mg-injected group, and 69% in 2.0mg-injected group. Malate dehydrogenase (MDH) activity was decreased greatly to 76% in 2.0mg-injected group. Succinate dehydrogenase (SDH) activity fatted to 85% in 1.0mg-injected group, and 74% in 2.0mg-injected group. ATP content in 1.0mg-injected group was almost near to the normal level, but it was increased significantly in 2.0mg-injected group.

  • PDF

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}$-BONDING , ${\pi}$-FAR INFRARED RAYS AND NEW SPACE ENERGY RESOURCE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.73-87
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remining valence electrons of any molecular atoms make three dimensional crystallizing $\pi$-bondings. The electrons on the $\pi$-bonding orbital rotate clockwise or counter-clockwise and they then make electro-magnetic waves between atoms on the orbital because electron move between plus charged ions. The three dimensional crystallizing $\pi$-bonding orbitals are quantum-mechanically modeled by a cyclic Kronig-Penny Model and energy band structures are analyzed with their potential barrier thickness. The waves generated between plus charged ions are the particular $\pi$-far infrared rays, which have dual properties between material and electro-magnetic waves and can be measured not by modern electro-magnetic tester but biosensor such as finger's force tester. Because the $\pi$-rays can be modulated with electro-magnetic waves it can be applied for harmful electro-magnetic wave killers. Because the $\pi$-rays make new three dimensional crystallizing $\pi$-bonding orbitals in the material the food and drink can be transformed into a helpful physical constitutional property for human health. Distinction between crystalline and amorphous metals is possible because very strong crystalline $\pi$-bonding orbitals can not easily be transformed into another. The $\pi$-rays can also be applied for biofunctional diagnostics and therapy. Gravitational field is one of the electro-magnetic fields. And also magnetic field and gravitational force field make charge's movement. ($\times$ = q, : magnetic field, : force field, q: plus charge, : velocity field)

  • PDF

TOPICAL APPLICATION OF TETRACYCLINE GEL IN SCALING AND ROOT PLANING (치석제거 및 치근활택술 시에 테트라싸이클린 젤의 국소적 도포)

  • Han, Soo-Boo;Lee, Jae-Il;Heo, Jeong-Mi;Chang, Mee-Kyung;Shim, Chang-Koo;Lee, Chul-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.647-658
    • /
    • 1993
  • The purpose of this study is to examine the influence of 5% tetracycline(Tc) gel on healing of gingival tissue and change of diseased root surface when used with nonsurgical procedure. 7 patients with advanced periodontitis were received thorough scaling and root planning, followed by saline irrigation on 10 randomly selected control teeth and Tc gel application for 5 minutes with specifically designed plastic instrument of 10 test teeth in contralateral side. At 0, 1, 7, 14, and 21 days after treatment, biopsy and extraction were carried out. At day 7, Tc group showed decreased inflammation and delayed proliferation of pocket epithelium in comparison with control group which was continued for all experimental days. Scanning electron microscopic finding revealed demineralized and cleaned root surface with exposed dentinal tubules in Tc gel group. In the present study, clinically successful result is expected with combined use of nonsurgical periodontal therapy and intrapocket application of Tc gel.

  • PDF

Synthesis and Characterization of CdSe/CdS/N-Acetyl-L-Cysteine/Quercetin Nano-Composites and Their Antibacterial Performance

  • Wang, Kunjie;Li, Mingliang;Li, Hongxia;Guan, Feng;Zhang, Deyi;Feng, Huixia;Fan, Haiyan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.136-141
    • /
    • 2015
  • We have discovered that quercetin, once coated on the CdSe and CdSe-CdS quantum dots (QDs), becoming highly water soluble. In the present work, we have successfully synthesized CdSe/CdS/N-Acetyl-L-Cysteine(NAC)/Quercetin nano-composites in the aqueous solution. The products were characterized using UV-vis spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The transmission electron microscopy (TEM) tests indicated that our nano-composite products are highly stable with homogeneous particle size and great monodispersity. Quercetin coated nano-composite CdSe/CdS/NAC/Quercetin showed different fluorescence behavior from that of CdSe/CdS/NAC. Most amazingly, the synthesized CdSe/CdS/NAC/Quercetin nano-composite exhibits strong antibacterial activity. The combination of the strong fluorescence and its antibacterial activity makes the quercetin modified quantum dots as a potential candidate for cancer targeted therapy and other cancer treatments.