Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.6.481

Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods  

Lee, Ki-Bum (Department of Applied Physics, Hannam University)
Nam, Chunghee (Department of Applied Physics, Hannam University)
Publication Information
Journal of Powder Materials / v.26, no.6, 2019 , pp. 481-486 More about this Journal
Abstract
Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.
Keywords
Iron oxide powder; Hydrothermal synthesis; Magnetite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. M. Wang, X. Cao, G. H. Liu, R. Y. Hong, Y. M. Chen, X. F. Chen, H. Z. Li, B. Xu and D. G. Wei: J. Magn. Magn. Mater., 323 (2011) 2953.   DOI
2 C. Y. Haw, F. Mohamed, C. H. Chia, S. Radiman, S. Zakaria, N. M. Huang and H. N. Lim: Ceram. Int., 36 (2010) 1417.   DOI
3 D. Kwon, J. Joo, J. Lee, K.-H. Park and S. Jeon: Anal. Chem., 85 (2013) 7594.   DOI
4 W. Lei, Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou and J. Lin: Phys. Lett. A, 381 (2017) 314.   DOI
5 C.-C. Lin and J.-M. Ho: Ceram. Int., 40 (2014) 10275.   DOI
6 C. Li, Y. Wei, A. Liivat, Y. Zhu and J. Zhu: Mater. Lett., 107 (2013) 23.   DOI
7 T. J. Daou, G. Pourroy, S. Begin-Colin, J. M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey and G. Rogez: Chem. Mater., 18 (2006) 4399.   DOI
8 D. Peng, S. Beysen, Q. Li, J. Jian, Y. Sun and J. Jiwuer: Particuology, 7 (2009) 35.   DOI
9 H. Zhu, D. Yang and L. Zhu: Surf. Coat. Technol., 201 (2007) 5870.   DOI
10 P. Hu, L. Kang, T. Chang, F. Yang, H. Wang, Y. Zhang, J. Yang, K.-S. Wang, J. Du and Z. Yang: J. Alloys Compd., 728 (2017) 88.   DOI
11 D.-L. Zhao, X.-W. Zeng, Q.-S. Xia and J.-T. Tang: J. Alloys Compd., 469 (2009) 215.   DOI
12 H. Yuan, Y. Wang, S.-M. Zhou and S. Lou: Chem. Eng. J., 175 (2011) 555.   DOI
13 S. Shi, C. Xu, X. Wang, Y. Xie, Y. Wang, Q. Dong, L. Zhu, G. Zhang and D. Xu: Mater. Des., 186 (2020) 108298.   DOI
14 B.-Y. Jung, H.-S. Lim, Y.-K. Sun and K.-D. Suh: J. Power Sources, 244 (2013) 177.   DOI
15 Y. Zong, H. Xin, J. Zhang, X. Li, J. Feng, X. Deng, Y. Sun and X. Zheng: J. Magn. Magn. Mater., 423 (2017) 321.   DOI