• Title/Summary/Keyword: electron beams irradiation.

Search Result 35, Processing Time 0.026 seconds

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF

Electron Beam-Induced Modification of Poly(dimethyl siloxane) (전자빔을 이용한 Poly(dimethyl siloxane)의 개질)

  • Kang, Dong-Woo;Kuk, In-Seol;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang;Mun, Sung-Yong;Lee, Young-Moo
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, poly (dimethyl siloxane) (PDMS) was modified using electron beam irradiation and its property was investigated. PDMS sheets prepared using a conventional thermal curing method were irradiated by electron beams at absorbed doses between 20 and 200 kGy and their properties were characterized using swelling degree and contact angle measurements, universal testing machine (UTM), thermogravimetric analyzer (TGA), and X -ray photoelectron spectrometer (XPS). The results of the swelling degree measurements, UTM, and TGA revealed that the swelling degree of the irradiated PDMS sheets was reduced down to 24% in comparison to the control sheet, and their compression strength and thermal decomposition temperature increased up to maximum 2.5 MFa and $10^{\circ}C$, respectively, due to the increase in crosslinking density by irradiation. In addition, on the basis of the results of contact angle measurements and XPS, the wettability of the PDMS sheets was enhanced up to 24% owing to the generation of hydrophilic functional groups on the PDMS surface by oxidation during electron beam irradiation.

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams (고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성)

  • Park Jong Yong;Choi Hyoung Wook;Ermakov Y.;Jung Yeon Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

A Study on the Dose Changes Depending on the Shielding Block Type of Irradiation During Electron Beam Theraphy (전자선치료 시 조사부위 차폐물 형태에 따른 선량변화 연구)

  • Lee, Sun-Yeb;Park, Cheol-Soo;Lee, Jae-Seung;Goo, Eun-Hoe;Cho, Jae-Hwan;Kim, Eng-Chan;Moon, Soo-Ho;Kim, Jin-Soo;Park, Cheol-Woo;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The primary focus of this study was to explore the variation in dose distributions of electron beams between different types of construction structure of cut-out blocks embodied in electron cones, given that the structure is considered one of the causes of multiple scattered radiation from electrons which may affect dose distributions. For evaluation, two types of cut-out blocks, divergency and straight, manufactured for this study, were compared in terms of area of interval in distribution of dose, and flatness and symmetric state of surface being radiated. The results showed that divergency cut-out blocks reduced the lateral scattering effects on the thickness of cut-out blocks more substantially than straight ones, leading to more uniform dose distribution at baseline depth. Notably in divergency cut-out blocks, the high dose area decreased more significantly, and more uniform dose distribution was observed at the edge of the irradiated field. This points to a need to consider the characteristics of dose distribution of electron beams when setting up radiotherapy planing at the venues. Therefore, this study is significant as an exploratory work for ensuring high accuracy in dose delivery for patients.

Beam Spoiler-dependent Total Body Irradiation Dose Assessment (전신방사선조사 시 선속 스포일러에 따른 선량 분포 및 영향 평가)

  • Lee, Dong-Yeon;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study examined the properties of photons and the dose distribution in a human body via a simulation where the total body irradiation(TBI) is performed on a pediatric anthropomorphic phantom and a child size water phantom. Based on this, we tried to find the optimal photon beam energy and material for beam spoiler. In this study, MCNPX (Ver. 2.5.0), a simulation program based on the Monte Carlo method, was used for the photon beam analysis and TBI simulation. Several different beam spoiler materials (plexiglass, copper, lead, aluminium) were used, and three different electron beam energies were used in the simulated accelerator to produce photon beams (6, 10, and 15 MeV). Moreover, both a water phantom for calculating the depth-dependent dosage and a pediatric anthropomorphic phantom for calculating the organ dosage were used. The homogeneity of photon beam was examined in different depths for the water phantom, which shows the 20%-40% difference for each material. Next, the org an doses on pediatric anthropomorphic phantom were examined, and the results showed that the average dose for each part of the body was skin 17.7 Gy, sexual gland 15.2 Gy, digestion 13.8 Gy, liver 11.8 Gy, kidney 9.2 Gy, lungs 6.2 Gy, and brain 4.6 Gy. Moreover, as for the organ doses according to materials, the highest dose was observed in lead while the lowest was observed in plexiglass. Plexiglass in current use is considered the most suitable material, and a 6 or 10 MV photon energy plan tailored to the patient condition is considered more suitable than a higher energy plan.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

Dose distribution at junctional area for head and neck radiotherapy (두경부 방사선치료시 접합 조사면의 선량분포)

  • 김정기;김기환;오영기;김진기;정동혁;신교철;양광모;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2001
  • For the head and neck radiotherapy, the technique of half beam using independent collimator is very useful to avoid overlapping of fields particularly when the lateral neck fields are placed adjacent to anterior supraclavicular field. Also abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom and the dose distribution at beam center of 2 half beams further examined according to depths(0 cm, 1.5 cm, 3 cm, 5 cm) for single anterior half beam and anterior/posterior half beam. The dose distribution to the junction line between photon and electron fields was also measured. For the single anterior half beam, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 88%, 93% and 95% of open beam, respectively. In the anterior/posterior half beams, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 92%, 93% and 95% of open beam, respectively At the junction line between photon and electron fields, hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. With above results, we concluded that when using electron beam or independent jaw for head and neck radiotherapy, the hot and cold dose area should be considered as critical point.

  • PDF

Fabrication of Backscatter Electron Cones for Radiation Therapy (산란전자선을 이용한 강내측방조사기구의 제작과 특성)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2001
  • Purpose : Irradiation cones by using backscatter electrons are made for the treatment of superficial small lesions of skin, oral cavity, and rectum where a significant dose gradient and maximum surface dose is desired. Methods and Materials : Backscatter electrons are produced from the primary electron beams from the linear accelerators. The design consists of a cylindrical cone that has a thick circular plate of high atomic number medium (Pb or Cu) attached to the distal end, and the plate can be adjusted the reflected angle. Primary electrons strike the metal plate perpendicularly and produce backscatter electrons that reflect through the lateral hole for treatment. Using film and a parallel plate ion chamber, backscatter electron dose characteristics are measured. Results : The depth dose characteristic of the backscatter electron is very similar to that of the hard x-ray beam that is commonly used for the intracavitary and superficial lesions. The basckscatter electron energy is nearly constant and effectively about 1.5 MeV from the clinical megavoltage beams. The backscatter electron dose rate of $35\~85\;cGy/min$ could be achieved from modern accelerators without any modification. and the depth in water of $50\%$ depth dose from backscatter electron located at 6mm for $45^{\circ}$ angled lead scatter. The beam flatness is dependent on the slit size and the depth of treatment, but is satisfactory to treat small lesions. Conclusions : The measured data for backscatter electron energy, depth dose flatness dose rate and absolute dose indicates that the backscatter electrons are suitable for clinical use.

  • PDF

Detection of Irradiated Milk Formulas using Electron Spin Resonance (전자스핀공명법(ESR)을 이용한 방사선조사 조제유류의 판별)

  • Woon, Jae-Ho;Park, Byeong-Ryong;Choi, Byung-Kook;Kim, Na-Young;Jeong, Hong-Jeom;Cheong, Ki-Soo;Kim, Hee-Sun;Kim, Chang-Seob
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.13-18
    • /
    • 2010
  • Electron Spin Resonance (ESR) spectroscopy has been used to detect the presence of radiation-induced free radicals in biological samples since the mid 1950s and to irradiate foods containing cellulose, crystalline sugar, and bone. Therefore, we analyzed the ESR spectrum of irradiated infant formula and its ingredients in this study. Samples were irradiated with 2 different radiation sources of $^{60}Co$ gamma rays and electron beams (EBs), and the absorbed doses were 0, 1, 3, 5, and 7 kGy. ESR measurements were performed under normal atmospheric conditions using a JEOL JES-FA100 spectrometer equipped with an X-band bridge. Irradiated infant formula showed anunsymmetrical spectrum ($g_1$=2.0050, $g_2$=2.0006); in contrast, non-irradiated samples showed asymmetrical spectrum. The ingredients of irradiated samples showed a multi-component ESR signal in glucose and lactose and a singlet-type spectrum in milk powder (g=2.0050). $R^2$ of the dose-response curve showed a fine linearity of over 0.95 across the entire sample. We also compared the spectra of identical samples irradiated with $^{60}Co$ gamma rays and EBs, because EBs can be used for food irradiation in foreign countries, although this is not permitted in Korea. However, we could not find any significant differences according to the types of radiation source. Thus, ESR spectroscopy can be used to detect irradiated infant formula and several types of primary ingredients in this formula.

  • PDF