• Title/Summary/Keyword: electron acceptors

Search Result 89, Processing Time 0.019 seconds

An FMN-containing NADH-quinone reductase from streptomyces sp (An FMN-Containing NADH-Quinone Reductase from Streptomyces sp.)

  • Youn, Hong-Duk;Lee, Jin-Won;Youn, Hwan;Lee, Jeong-Kug;Hah, Yung-Chil;Kang, Sa-Ouk
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.206-213
    • /
    • 1996
  • NADH-quinone reductase was purified 22-fold from the cytosolic fraction of Streptomyces sp. Imsnu-1 to apparent hemogenity, with an overall yield of 9%, by the purification procedure consisting of ammonium, sulfate precipitation and DEAE Sephacryl S-200 and DEAE 5 PW chromatographies. Thes molecular mass of the enzyme determined by gel filtration chromatography was found to be 110 kDa. SDS-PAGE revealed that the enzyme consists of two sugunits with a molecular mass of 54 kDa. The enzyme contained 1 mol of FMN per subunit as a cofactor. The $A_{272}$ A$_{457}$ ratio was 6.14 and the molar extinction coefficients were calculated to be 20, 800 and 25, 400M$^{-1}$ $cm^{-1}$ / AT 349 AND 457 nm, respectively. The N-terminal sequence of the enzyme contained the highly conserved fingerprint of ADP-binding domain. The enzyme used NADH as an electron donor and various quinones as electron acceptors. Cytochrome c was practically inactive. Air-stable flavin semiquinone was produced by the addition of NADH to the enzyme. Also, naphthosemiquinone was detected in the reaction mixture containing the enzyme.

  • PDF

Purification and characterization of a thermostable glutamate dehydrogenase from a thermophilic bacterium isolated from a sterilization drying oven

  • Amenabar, Maximiliano J.;Blamey, Jenny M.
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and $70^{\circ}C$, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both $NAD^+$ and $NADP^+$ as electron acceptors, displaying more affinity for $NADP^+$ than for $NAD^+$. No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at $100^{\circ}C$ for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.

Weak Interactions Between Organic Molecules and Alkali Metal Ions Present in Zeolites Help Manipulate the Excited State Behavior of Organic Molecules

  • Ramamurthy, V.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.127-148
    • /
    • 2003
  • Zeolite is a porous highly interactive matrix. Zeolitic cations help to generate triplets from molecules that possess poor intersystem crossing efficiency. Certain zeolites act as electron acceptors and thus can spontaneously generate radical cations. Zeolites also act as proton donors and thus yield carbocations without any additional reagents. These reactive species, radical cations and carbocations, have long lifetime within a zeolite and thus lend themselves to be handled as ‘regular’ chemicals. Internal structure of zeolites is studded with cations, the counter-ions of the anionic framework. The internal constrained structure and the cations serve as handles for chemists to control the behavior of guest molecules included within zeolites.

  • PDF

Isolation and Characterization of a Dibenzothiophene Degrading Sulfate-Reducing Soil Bacterium

  • Kim, Hae-Yeong;Kim, Tae-Sung;Kim, Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 1991
  • Sulfate-reducing bacteria have been isolated from soil and their abilities to degrade dibenzothiophene (DBT) were compared with those of type cultures. Among the strains tested a soil isolate M6 showed the highest ability to degrade DBT. Isolate M6 was characterized as a mesophilic obligatory anaerobe. The morphology of the bacterium was vibrioid with the size of $0.4-0.7{\;}\mu\textrm{m}{\;}by{\;}1.0-1.5{\;}\mu\textrm{m}$. Gram reaction was negative and nonsporulating. Desulfoviridin is present. Lactate, pyruvate, ethanol and malate supported growth of the bacterium in the presence of sulfate. Sulfate, sulfite, thiosulfate and sulfur served as electron acceptors for growth. Hydrogenase was present. The mol% of guanine and cytosine of DNA was determined as 56%. The bacterium produced viscous material. From these results, the isolate M6 was identified as Desulfovibrio desulfuricans.

  • PDF

Purification and Production Conditions of Antimicrobial Compound from Methylotrophic Actinomycetes MO-16 (Methanol 자화방선균 MO-16으로부터 항균성 물질의 정제 및 생산조건)

  • 김현수;이정수
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • A methylotrophic actinomycetes strain MO-16, which produce the antimicrobial compound, was isolated from soil and supposed as Amycolatopsis sp. based on taxonomic studies. The cell-free extract of methanol-grown strain MO-16 showed dehydrogenase activity for methanol and formaldehyde when various electron acceptors were added for oxidation. On the other hand, methanol did not affect the production of antimicrobial compounds, and organic nitrogen sources such as corn steep liquor and peptone were better than inorganic nitrogen sources. These compounds showed broad antimicrobial spectrum to the tested strains such as bacteria and yeast. The antimicrobial comounds were very stable under heat(121$^{\circ}C$), acid(pH2.0), alkali(pH11.0) treatments. These compounds were isolated by ethylacetate extract, silica gel column chromatography and reverse phase HPLC. Two compounds(peak 1 and 2) were detected as antimicrobial compounds through the HPLC analysis. The peak 2 was purified as a single compound and revealed a 98% purity.

  • PDF

The Determination of Enoxacin with p-Quinone Derivatives (파라퀴논 유도체와의 전하이동착물 형성을 이용한 에녹사신 정량)

  • 이지연;김동오;남수자;정문모;허문회;안문규
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.437-441
    • /
    • 1999
  • Enoxacin[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-\piperazinyl)-1,8-naphthyridine-3-carboxylic acid, ENX] is a new quinolone antibacterial agent. The method is based on the highly colored charge-transfer complex formation of this drug as a $\pi$-electron donor with 7,7,8,8-tetracyanoquinodimethane(TCNQ) or chloranil(CL) as $\pi$-acceptors. The colored products were measured spectrophotometrically at 842 nm and 552 nm for TCNQ and CL, respectively. The different experimental conditions are optimized. The linearities for TCNQ and CL were $1.6{\;}\mu\textrm{g}/mL~32{\;}\mu\textrm{g}/mL$ and $6.4{\;}\mu\textrm{g}/mL~160{\;}\mu\textrm{g}/mL$, respectively and colors were produced in non-aqueous media. This report describes a simple and ra\pid method for the analysis of enoxacin.

  • PDF

Thermoelectric Properties of Co1-xFexSb3 Prepared by Hot Pressing (열간압축성형으로 제조한 Co1-xFexSb3의 열전특성)

  • Park, Kwan-Ho;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.435-438
    • /
    • 2006
  • The hot pressing was employed to prepare Fe-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by the hot pressing under 60MPa at 773 K for 2 hrs. Iron atoms acted as electron acceptors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by the appropriate doping. $Co_{0.7}Fe_{0.3}Sb_3$ was found as an optimum composition for the best thermoelectric property in this work.

Luminescence of CaS:Bi

  • 김창홍;편종홍;최 한;김성진
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.337-340
    • /
    • 1999
  • Luminescence of bismuth activated CaS, CaS:Bi, prepared in sodium polysulfide is studied. Excitation spectrum of CaS:Bi shows a band at 350 nm due to the recombination process between holes in Na+Ca2+ and electrons in conduction bands, in addition to bands at 260 nm from band gap of CaS, and at 320 nm (1S0→1P1) and at 420 nm (1S0→3P1) from electronic energy transitions of Bi. Emission band at 450 nm is from 3P1→1S0 transition of Bi3+, bands at 500 nm and 580 nm correspond to recombinations of electron donors (Bi3+Ca2+ and VS2-) with acceptors (VCa2+ and Na+Ca2+). Emission band of 3P1→1S0 transition is shifted to longer wavelength from CaS:Bi to BaS:Bi, due to the increase of the Stokes shift by the decrease of the crystal field parameter from CaS:Bi to BaS:Bi.

Recent Research Trend in Nonfullerene Electron Acceptors for Organic Solar Cells (비풀러렌 소재 기반 유기태양전지 연구 동향 및 전망)

  • Lee, Jaewon
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.5
    • /
    • pp.15-29
    • /
    • 2021
  • 최근 유기태양전지 분야의 큰 진보는 비풀러렌 전자수용체 소재의 등장에 의해 달성되었다. 비풀러렌 기반 유기광활성층은 기존 풀러렌 기반 소자의 내재적 한계로 지적되던 높은 에너지 손실을 극복하고 동시에 소재의 흡광대역 확장을 통한 광전류밀도 증가로 유기태양전지 성능을 지속적으로 개선하고 있다. 더불어 비풀러렌 소재는 화학 구조의 개질 용이성으로 밴드갭 자유 제어가 가능하므로, 광활성층의 흡광 대역을 정밀하게 제어하면 반투명 태양전지, 실내 저조도 태양전지, 파장선택적 광검출기, 소재융합형 소자 등 다양한 광전자소자 응용이 가능하여 주목받고 있다. 본 기고문에서는 유기태양전지 광활성층에 활용되는 비풀러렌 소재의 최신 연구 동향과 전망을 다루고자 한다.

A Study on the Charge Transfer Complex Formed between 2,4-Dihalogen or 2,4,6-trihalogenanisole Derivatives and Iodine or Iodine Monochloride (2,4-디할로겐 또는 2,4,6-트리할로겐아니솔 유도체들과 요오드 또는 염화요오드 사이에 생성된 전하이동 착물에 관한 연구)

  • Kim, You Sun;Park, Kyung Bae
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.380-390
    • /
    • 1976
  • The trends of forming a charge transfer complex have been studied for electron donors such as anisole, 4-chloroanisole, 2,4-dichloroanisole, 2-fluoro-4-chloroanisole, 2-bromo-4-chloroanisole, 2-iodo-4-chloroanisole, 2-fluoro-4,6-dichloroanisole, 2,4,6-trichloroanisole, 2-bromo-4,6-dichloroanisole, 2-iodo-4,6-dichloroanisole, and 2-iodo-4,5,6-trichloroanisole, and electron acceptors such as iodine and iodine monochloride in the carbon tetrachloride or the hexane solvent system. It was found that the formation of a charge transfer complex was influenced by the Van der Waals Radii of the 2-halogen atoms on the benzene ring and further the overall steric moiety of the molecule of the electron donor. These trends were also experienced in a system of chloroform and one of the prementioned electron donor by means of a nuclear magnetic resonance spectrometry. The spectrophotometrical data on the formation of the charge transfer complex were presented and the results were discussed with views of the steric structure of the 2-halogen atom on the benzene ring.

  • PDF