Recent Research Trend in Nonfullerene Electron Acceptors for Organic Solar Cells

비풀러렌 소재 기반 유기태양전지 연구 동향 및 전망

  • Lee, Jaewon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이재원 (충남대학교 응용화학공학과)
  • Published : 2021.10.31

Abstract

최근 유기태양전지 분야의 큰 진보는 비풀러렌 전자수용체 소재의 등장에 의해 달성되었다. 비풀러렌 기반 유기광활성층은 기존 풀러렌 기반 소자의 내재적 한계로 지적되던 높은 에너지 손실을 극복하고 동시에 소재의 흡광대역 확장을 통한 광전류밀도 증가로 유기태양전지 성능을 지속적으로 개선하고 있다. 더불어 비풀러렌 소재는 화학 구조의 개질 용이성으로 밴드갭 자유 제어가 가능하므로, 광활성층의 흡광 대역을 정밀하게 제어하면 반투명 태양전지, 실내 저조도 태양전지, 파장선택적 광검출기, 소재융합형 소자 등 다양한 광전자소자 응용이 가능하여 주목받고 있다. 본 기고문에서는 유기태양전지 광활성층에 활용되는 비풀러렌 소재의 최신 연구 동향과 전망을 다루고자 한다.

Keywords

References

  1. G. Li, R. Zhu, and Y. Yang, Polymer solar cells, Nat. Photonics, 6, 153-161 (2012). https://doi.org/10.1038/nphoton.2012.11
  2. L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, and L. Yu, Recent advances in bulk heterojunction polymer solar cells, Chem. Rev., 115, 12666-12731 (2015). https://doi.org/10.1021/acs.chemrev.5b00098
  3. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, F. and A. J. Heeger, Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791 (1995). https://doi.org/10.1126/science.270.5243.1789
  4. G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, Nonfullerene acceptor molecules for bulk heterojunction organic solar cells, Chem. Rev., 118, 3447-3507 (2018). https://doi.org/10.1021/acs.chemrev.7b00535
  5. D. Veldman, S. C. J. Meskers, and R. A. J. Janssen, The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells, Adv. Funct. Mater., 19, 1939-1948 (2009). https://doi.org/10.1002/adfm.200900090
  6. C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S. R. Marder, and X. Zhan, Non-fullerene acceptors for organic solar cells, Nat. Reviews Mater., 3, 18003 (2018). https://doi.org/10.1038/natrevmats.2018.3
  7. F. Liu, L. Zhou, W. Liu, Z. Zhou, Q. Yue, W. Zheng, R. Sun, W. Liu, S. Xu, H. Fan, L. Feng, Y. Yi, W. Zhang, and X. Zhu, Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy, Adv. Mater., 33, 2100830 (2021). https://doi.org/10.1002/adma.202100830
  8. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, and L. Ding, 18% Efficiency organic solar cells, Science Bulletin, 65, 272-275 (2020). https://doi.org/10.1016/j.scib.2020.01.001
  9. B. A. Gregg, and M. C. Hanna, Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation, J. Appl. Phys., 93, 3605-3614 (2003). https://doi.org/10.1063/1.1544413
  10. J. Zhang, H. S. Tan, X. Guo, A. Facchetti, and H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors, Nat. Energy, 3, 720-731 (2018). https://doi.org/10.1038/s41560-018-0181-5
  11. J.-L. Bredas, Molecular Understanding of Organic Solar Cells: The Challenges, AIP Conf. Proc., 42, 55-58 (2012).
  12. J. Yao, T. Kirchartz, M. S. Vezie, M. A. Faist, W. Gong, Z. He, H. Wu, J. Troughton, T. Watson, D. Bryant, and Jenny Nelson, Quantifying losses in open-circuit voltage in solution-processable solar cells, Phys. Rev. Appl., 4, 014020 (2015).
  13. D. Baran, T. Kirchartz, S. Wheeler, S. Dimitrov, M. Abdelsamie, J. Gorman, R. S. Ashraf, S. Holliday, A. Wadsworth, N. Gasparini, P. Kaienburg, H. Yan, A. Amassian, C. J. Brabec, J. R. Durranta, and I. McCulloch, Reduced voltage losses yield 10% efficient fullerene free organic solar cells with 1 V open circuit voltages, Energy Environ. Sci., 9, 3783-3793 (2016). https://doi.org/10.1039/C6EE02598F
  14. J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganas, K. Gundogdu, F. Gao, and H. Yan, Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nat. Energy, 1, 16089 (2016). https://doi.org/10.1038/nenergy.2016.89
  15. J. Lee, S.-J. Ko, M. Seifrid, H. Lee, C. McDowell, B. R. Luginbuhl, A. Karki, A. K. Cho, T.-Q. Nguyen, and G. C. Bazan, Design of Nonfullerene Acceptors with Near-Infrared Light Absorption Capabilities, Adv. Energy Mater., 8, 1801209 (2018). https://doi.org/10.1002/aenm.201801209
  16. J. Lee, S. Song, J. Huang, Z. Du, H. Lee, Z. Zhu, S.-J. Ko, T.-Q. Nguyen, J. Y. Kim, K. Cho, and G. C. Bazan, Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics, ACS Materials Lett., 2, 395-402 (2020). https://doi.org/10.1021/acsmaterialslett.9b00512
  17. F. Zhao, H. Zhang, R. Zhang, J. Yuan, D. He, Y. Zou, F. Gao, Emerging Approaches in Enhancing the Efficiency and Stability in Non-Fullerene Organic Solar Cells, Adv. Energy Mater., 10, 2002746 (2020). https://doi.org/10.1002/aenm.202002746
  18. Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells, Adv. Mater., 27, 1170 (2015). https://doi.org/10.1002/adma.201404317
  19. Y. Lin, T. Li, F. Zhao, L. Han, Z. Wang, Y. Wu, Q. He, J. Wang, L. Huo, Y. Sun, C. Wang, W. Ma, X. Zhan, Structure Evolution of Oligomer Fused-Ring Electron Acceptors toward High Efficiency of As-Cast Polymer Solar Cells, Adv. Energy Mater., 6, 1600854 (2016). https://doi.org/10.1002/aenm.201600854
  20. D. He, F. Zhao, J. Xin, J. J. Rech, Z. Wei, W. Ma, W. You, B. Li, L. Jiang, Y. Li, C. Wang, A Fused Ring Electron Acceptor with Decacyclic Core Enables over 13.5% Efficiency for Organic Solar Cells, Adv. Energy Mater., 8, 1802050 (2018). https://doi.org/10.1002/aenm.201802050
  21. S, Li, L, Ye, W, Zhao, X, Liu, J, Zhu, H, Ade, J, Hou, Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor, Adv. Mater., 29, 1704051 (2017). https://doi.org/10.1002/adma.201704051
  22. X. Ma, Z. Xiao, Q. An, M. Zhang, Z. Hu, J. Wang, L. Ding, and F. Zhang, Simultaneously improved efficiency and average visible transmittance of semitransparent polymer solar cells with two ultra-narrow bandgap nonfullerene acceptors, J. Mater. Chem. A, 6, 21485-21492 (2018). https://doi.org/10.1039/C8TA08891H
  23. Z.-P. Yu, Z.-X. Liu, F.-X. Chen, R. Qin, T.-K. Lau, J.-L. Yin, X. Kong, X. Lu, M. Shi, C.-Z. Li, and H. Chen, Simple non-fused electron acceptors for efficient and stable organic solar cells, Nat. Commun., 10, 2152 (2019). https://doi.org/10.1038/s41467-019-10098-z
  24. F. Liu, Z. Zhou, C. Zhang, J. Zhang, Q. Hu, T. Vergote, F. Liu, T. P. Russell, and X. Zhu, Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor, Adv. Mater., 29, 1606574 (2017). https://doi.org/10.1002/adma.201606574
  25. H. Yao, Y. Chen, Y. Qin, R. Yu, Y. Cui, B. Yang, S. Li, K. Zhang, and J. Hou, Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells, Adv. Mater., 28, 8283-8287 (2016). https://doi.org/10.1002/adma.201602642
  26. J. Lee, S.-J. Ko, M. Seifrid, H. Lee, B. R. Luginbuhl, A. Karki, M. Ford, K. Rosenthal, K. Cho, T.-Q. Nguyen, G. C. Bazan, Bandgap Narrowing in Non-Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 nm, Adv. Energy Mater., 27, 1801212 (2018).
  27. A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumuller, C. Brabec, and P. Meredith, A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells, Adv. Energy Mater., 11, 20003570 (2021).
  28. L. Ma, S. Zhang, J. Zhu, J. Wang, J. Ren, J. Zhang, and J. Hou, Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell, Nature Comm., 12, 5093 (2021). https://doi.org/10.1038/s41467-021-25394-w
  29. C. Li, H. Fu, T. Xia, and Y. Sun, Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells, Adv. Energy Mater., 9, 1900999 (2019). https://doi.org/10.1002/aenm.201900999
  30. W. Gao, B. Fan, F. Qi, F. Lin, R. Sun, X. Xia, J. Gao, C. Zhong, X. Lu, J. Min, F. Zhang, Z. Zhu, J. Luo, and A. K.-Y. Jen, Asymmetric Isomer Effects in Benzo[c][1,2,5] thiadiazole-Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement, Adv. Func. Mater., 31, 2104369 (2021). https://doi.org/10.1002/adfm.202104369
  31. Y. Chen, F. Bai, Z. Peng, L. Zhu, J. Zhang, X. Zou, Y. Qin, H. K. Kim, J. Yuan, L.-K. Ma, J. Zhang, H. Yu, P. C. Y. Chow, F. Huang, Y. Zou, H. Ade, F. Liu, and H. Yan, Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells, Adv. Energy Mater., 11, 2003141 (2021). https://doi.org/10.1002/aenm.202003141
  32. Z.-G. Zhang, and Y. Li, Polymerized Small-Molecule Acceptors for High-Performance, All-Polymer Solar Cells, Angew. Chem. Int. Ed., 60, 4422-4433 (2021). https://doi.org/10.1002/anie.202009666
  33. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency, Nat. Commun., 4, 1446 (2013). https://doi.org/10.1038/ncomms2411
  34. X. Che, Y. Li, Y. Qu, and S. R. Forrest, High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency, Nat. Energy, 3, 422 (2018). https://doi.org/10.1038/s41560-018-0134-z
  35. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H. L. Yip, Y. Cao, Y. Chen, Organic and solution-processed tandem solar cells with 17.3% efficiency, Science, 361, 1094 (2018). https://doi.org/10.1126/science.aat2612
  36. H.-W. Cheng, H. Zhang, Y.-C. Lin, N.-Z. She, R. Wang, C.-H. Chen, J. Yuan, C.-S. Tsao, A. Yabushita, Y. Zou, Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component, Nano Lett., 19, 5053 (2019). https://doi.org/10.1021/acs.nanolett.9b01344
  37. L. Zhan, S. Li, X. Xia, Y. Li, X. Lu, L. Zuo, M. Shi, H. Chen, Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18%, Adv. Mater., 33, 2007231 (2021). https://doi.org/10.1002/adma.202007231
  38. Z. Hu, J. Wang, X. Ma, J. Gao, C. Xu, K. Yang, Z. Wang, J. Zhang, and F. Zhang, A critical review on semitransparent organic solar cells, Nano Energy, 78,105376 (2020). https://doi.org/10.1016/j.nanoen.2020.105376
  39. Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An, M. Zhang, X. Ma, J. Wang, J. Miao, C. Yang, Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance, Nano Energy, 55, 424-432 (2019). https://doi.org/10.1016/j.nanoen.2018.11.010
  40. S. Chen, H. Yao, B. Hu, G. Zhang, L. Arunagiri, L.-K. Ma, J. Huang, J. Zhang, Z. Zhu, F. Bai, W. Ma, and H. Yan, A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency, Adv. Mater., 8, 1800529 (2018).