• Title/Summary/Keyword: electromagnetic wave radar

Search Result 189, Processing Time 0.025 seconds

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

Estimation of Detection Performance for Vehicle FMCW Radars Using EM Simulations

  • Yoo, Sungjun;Kim, Hanjoong;Byun, Gangil;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • This paper proposes a systematic method for estimating detection performances of a frequency-modulated continuous wave radar using electromagnetic simulations. The proposed systematic method includes a radar system simulator that can obtain range-Doppler images using the electromagnetic (EM) simulations in conjunction with a test setup employed for performance evaluation of multiple targets at different velocities in a traffic environment. This method is then applied for optimizing the half-power beamwidths of the antenna array using an evaluation metric defined to improve the detection strengths for the multiple targets. The optimized antenna has vertical and horizontal half-power beam widths of $10^{\circ}$ and $60^{\circ}$, respectively. The results confirm that that the proposed systematic method is suitable to improve the radar detection performance with the enhanced radar-Doppler images.

추적레이다에 의한 인체에 대한 영향(HERP) 및 전자파 간섭(EMI) 분석

  • Kim, Dae-Oh;Sin, Han-Seop;Kim, Tae-Hyung;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.239-246
    • /
    • 2005
  • This paper analyze the hazard of electromagnetic radiation to personnel (HERP) and electromagnetic interference (EMI) by C-band tracking radar. Especially, this analysis defines the safety distance for the controlled & uncontrolled personnel from high power radiation of electromagnetic wave within the main beam of 3 degrees by C-band tracking radar. In addition to HERP, the analysis of electromagnetic interference between tracking radar and weather radar was accomplished to decide the safety distance for EMI protection.

  • PDF

Analysis of Radar Cross Section of the Tank and Its Application at Millimeter Wave W-Band (밀리미터파 W-대역에서 전차의 레이다 단면적 해석 및 응용)

  • Shin, Hokeun;Song, Sung Chan;Kim, Jihyung;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.756-759
    • /
    • 2017
  • In this paper, the radar cross section of a tank is analyzed at millimeter wave W-band. We calculate the radar cross section of the tank using the program based on PO and PTD and the computed results are compared with those of commercial simulator to check the accuracy of computations. The radar cross section is calculated in terms of the incident angle, polarization, and tank with or without cannon. The radar cross section can be reduced by changing the shape of the turret that can be applied to stealth tanks.

A Study on the Error Rate of Non-destructive Rebar Detection Under Different Environmental Factors (환경적 요인에 따른 비파괴 철근 탐사의 오차율에 관한 연구)

  • Kang, Beom-Ju;Kim, Young-Hwan;Kim, Young-Min;Park, Kyung-Han;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.506-513
    • /
    • 2021
  • The durability and safety of reinforced concrete structures significantly depend on the reinforcement conditions, concrete cover thickness, cracks, and concrete strength. There are two ways to accurately determine the information on reinforcing bars embedded in concrete - the local destructive method and the non-destructive rebar detection test. In general, the non-destructive rebar detection tests, such as the electromagnetic wave radar method, electromagnetic induction method, and radiation method, are adopted to avoid damage to the structural elements. The moisture content and temperature of concrete affect the dielectric constant, which is the electrical property of concrete, and cause interference in the non-destructive rebar detection test results. Therefore, in this study, the effects of the electromagnetic wave radar method and electromagnetic induction method have been analyzed according to the temperature and surface moisture content of concrete. Due to the technological advancement and development of equipment, the average error rate was less than 5% in the specimens at 24℃, irrespective of their operating principles. Among the tested methods, the electromagnetic induction method showed very high accuracy. The electromagnetic wave radar method indicated a relatively small error rate in the dry state than in the wet state, and exhibited a relatively high error rate at high temperatures. It was confirmed that the error could be reduced by applying the electromagnetic wave radar method when the temperature of the probe was low and in a dry state, and by using the electromagnetic induction method when the probe was in a wet state or at a high temperature.

Detecting Reinforcing Bars under Multi Boundary Layers and Void Shapes in Concrete Using Simulation Analysis Model of Electromagnetic Wave Radar (전자파 레이더 모의해석에 의한 다층 경계 콘크리트 철근 및 내부 공동형상 검출 특성)

  • Park, Seok Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.809-816
    • /
    • 2006
  • More than effectively judging the existence of reinforcing bars under multi boundary layers and void shapes in concrete, this study aims to develop the analysis algorithm of radar response on multi boundary layers in reinforced concrete and radar capable of estimation of the shape of specific voids in plain concrete. To detect or estimate reinforcing bars and void shapes in these conditions, the simulation analysis model of transmission and reflection wave of electromagnetic radar is used. This radar simulation model is carried out with reinforced or non reinforced concrete of various boundary conditions and void shapes. And, the output signals (images) of radar simulation results are calculated and represented by convolution method. As the results, it is clarified that this simulation analysis technique can be used to analyze radar response on multi boundary layers in reinforced concrete and void shapes in concrete.

Application of Compressive Sensing to Two-Dimensional Radar Imaging Using a Frequency-Scanned Microstrip Leaky Wave Antenna

  • Yang, Shang-Te;Ling, Hao
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.113-119
    • /
    • 2017
  • The application of compressive sensing (CS) to a radar imaging system based on a frequency-scanned microstrip leaky wave antenna is investigated. First, an analytical model of the system matrix is formulated as the basis for the inversion algorithm. Then, $L_1-norm$ minimization is applied to the inverse problem to generate a range-azimuth image of the scene. Because of the antenna length, the near-field effect is considered in the CS formulation to properly image close-in targets. The resolving capability of the combined frequency-scanned antenna and CS processing is examined and compared to results based on the short-time Fourier transform and the pseudo-inverse. Both simulation and measurement data are tested to show the system performance in terms of image resolution.

A Modeling Process of Equivalent Terrains for Reduced Simulation Complexity in Radar Scene Matching Applications

  • Byun, Gangil;Hwang, Kyu-Young;Park, Hyeon-Gyu;Kim, Sunwoo;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • This study proposes a modeling process of equivalent terrains to reduce the computational load and time of a full-wave electromagnetic (EM) simulation. To verify the suitability of the proposed process, an original terrain model with a size of $3m{\times}3m$ is equivalently quantized based on the minimum range resolution of a radar, and the radar image of the quantized model is compared with that of the original model. The results confirm that the simulation time can be reduced from 407 hours to 162 hours without a significant distortion of the radar images, and an average estimation error of the quantized model (20.4 mm) is similar to that of the original model (20.3 mm).

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Design of Decoupled PMC-backed Air Waveguide Antenna for Continuous Wave Ground Penetrating Radar (상호 결합을 최소화한 연속파(CW) Ground Penetrating Radar(GPR)용 공기 도파관 안테나 설계)

  • 제도흥;나정웅
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.177-180
    • /
    • 2001
  • A decoupled, wide-band, perfectly magnetically conductor(PMC)-backed air waveguide antenna is designed and constructed for the use of the continuous electromagnetic wave ground penetrating radar in the frequency range from 200MHz to 600MHz. Two planar dipoles are located inside air slab covered by PMC on the top side and separated by an air gap from the bottom ground interface. The coupling between the transmitting and the receiving dipoles is calculated by less than -60dB over the frequency from 200MHz to 600MHz.

  • PDF