• Title/Summary/Keyword: electromagnetic characteristics

Search Result 2,226, Processing Time 0.029 seconds

Fabrication of Miniature Radiation Sensor Using Plastic Optical Fiber for Medical Usage (플라스틱 광섬유를 이용한 초소형 의료용 방사선 센서 제작)

  • Hwang, Young-Muk;Cho, Dong-Hyun;Cho, Hyo-Sung;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, film type radiation sensor tips are fabricated for remote sensing of X or g-ray with inorganic scintillators and plastic optical fiber. The visible range of light from the inorganic scintillator that is generated by X and g-ray is guided by the plastic optical fiber and is measured by optical detector and power-meter. It is expected that the fiber-optic radiation sensor which is possible to be developed based on this study is used for remote, fast and exact sensing of X or g-ray because of its characteristics such as very small size, light weight and no interference to electromagnetic fields.

  • PDF

A Study on the Speed Sensorless Vector Control for Induction Motor Adaptive Control Method using a High Frequency Boost Chopper of Hybrid Type Piezoelectric Transformer (하이브리드형 압전 변압기의 고주파 승압 초퍼를 이용한 적응제어기법 유도전동기 속도 센서리스 벡터제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Song-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.332-345
    • /
    • 2013
  • In this paper, recently, it is described to the piezoelectric transformer technology develops, because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, flux linkage, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. A rotor speed identification method of induction motor based on the theory of flux model reference adaptive system(FMRAS). The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the model are introduced to perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM techniuqe and DC-DC converter. High speed calculation and processing for vector control is carried out by digital signal one chip microprocessor. Validity of the proposed control method is verified through simulation and experimental results.

Frequency Domain Characteristics of the Metamaterial Slab Using 2D-FDTD (2D-FDTD 방법을 이용한 메타물질 Slab의 주파수 영역 특성)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1165-1172
    • /
    • 2008
  • In this paper, the scattering parameters of the metamaterial slab are obtained using the 2D FDTD(Finite-Difference Time-Domain) method. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity. But it is very difficult to obtain frequency response of metamaterial itself because frequency dispersive model such as Lorentz, Drude model are used in FDTD. We used the well-known m-n-m cycle sine pulse to obtain the frequency response of the metamaterials. Comparisons between the wideband Gaussian input pulse and band-limited m-n-m cycle sine pulse are performed in this paper also. From the results, we concluded that the scattering parameters in frequency domain can be obtained using specific input pulse in FDTD even if the response has valid only for limited bandwidth.

Effect of Reductants and their Properties of Electric Resistivity on the Preparation of Ag coated Cu Powders by Chemical Reduction Method (화학환원법을 이용한 은 코팅 구리 분말 제조 시 환원제의 영향 및 전기비저항 특성)

  • Ahn, Jong-Gwan;Yoon, Chi-Ho;Kim, Dong-Jin;Cho, Sung-Wook;Park, Je-Shin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1097-1102
    • /
    • 2010
  • Silver coated copper powders were prepared by a chemical reduction method with controlling the deposition process variables such as the feeding rate of the silver ionic solution and concentration of the reductants at room temperature. The characteristics of the products were evaluated by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic absorption spectrophotometer (AA) and a 4 probe resistivity measurement system. The optimum condition of the preparation of Ag coated Cu powders was at 0.05 M of potassium sodium tartrate and 2 ml/min of the feeding rate of the silver ionic solution. Our method successfully produced dense, uniform, and well-dispersed Ag coated Cu powder of $2{\sim}2.5{\mu}m$ witha silver layer of 100~200 nm. Additionally, we found that thespecific resistivity of the 30 wt.% Ag coated Cu powder was similar to that of pure silver, so that the composite powder could be used as an alternative electromagnetic shielding material for silver.

장풍 폐광산의 산성광산폐수에 의한 침출수 유동에 대한 지구물리 및 지화학탐사자료의 상관해석

  • Kim, Ji-Su;Han, Su-Hyeong;Choe, Sang-Hun;Lee, Gyeong-Ju;Lee, In-Gyeong;Lee, Pyeong-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 2002
  • Geophysical surveys(self-potential, electromagnetic, electrical resistivity, and seismic refraction methods) were performed to delineate the flow channel of leachate from a AMD (acid mine drainage) by correlating the anomalies to geochemical characteristics at an abandoned mine (Jangpoong mine). The geophysical responses attempted to be correlated with water sample analysis data(pH, EC, heavy metals, ${SO_4}^{-2}$). Electrical dipole-dipole resistivity sections represent the low-resistivity zone trending northwest, which indicates the leachate flow by AMD along the contact of the mine waste rock dump and the bedrock. From the overall points of geophysical and geochemical anomalies, it is summarized that the flow channel of leachate by AMD can be successfully imaged with composite interpretations on the geophysical and geochemical studies.

  • PDF

A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities (터널 라이닝 공동에 대한 GPR 신호 특성 분석을 위한 수치해석 연구)

  • Go, Gyu-Hyun;Lee, Sung Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.65-76
    • /
    • 2021
  • There is a possibility of cavities occurring inside and behind the lining of an aged tunnel structure. In most cases, it is not easy to check the cavity because it exists in a place where visual inspection is impossible. Recently, attempts have been made to evaluate the condition of the tunnel lining and the backfill materials using non-destructive tests such as Ground Penetrating Radar, and various related model tests and numerical analysis studies have been conducted. In this study, the GPR signal characteristics for tunnel lining model testing were analyzed using gprMax software, which was compared with model test results. The numerical model applied to the model test reasonably simulated the electromagnetic wave signal according to the change of the material such as tunnel lining and internal cavity. Using the verified GPR model, B-scan data for the development of the GPR signal analysis technique were obtained, which can evaluate the thickness of the tunnel lining, the presence of the cavity, the effect of the waterproof membrane, and the frequency band.

Review Study on the Measurement Tools of Scoliosis: Mainly on Non-radiological Methods (척추측만증 평가 척도에 관한 문헌 고찰: 비방사선 방법을 중심으로)

  • Kim, Dong-Joo;Choi, Seong-Kyeong;Jo, Hyo-Rim;Ha, Yu-bin;Choi, Sung-Hwan;Park, Seo-Hyun;Lee, Seung Deok;Keum, Dong-Ho;Sung, Won-Suk;Kim, Eun-Jung
    • The Journal of Korean Medicine
    • /
    • v.42 no.1
    • /
    • pp.75-98
    • /
    • 2021
  • Objectives: The purpose of this study is to investigate the characteristics, validity, and reliability of non-radiological assessment tools of scoliosis that have been studied so far. Methods: Electronic databases including Pubmed, Cochrane Library, CNKI, Science On, RISS, OASIS were searched by keywords including 'scoliosis assessment', 'scoliosis screening', 'physical examination', 'functional measurement', 'photography', and 'smartphone'. Results: 32 articles using radiation-free assessments were identified from 1,011 records. The mostly used non-radiological methods were Surface topography, Scoliometer, Ultrasound, Digital Infrared Thermal Imaging, and Photography. The other methods were Gait analysis, 3D depth sensor imaging, and Low intensity electromagnetic scan. Conclusions: It was found that non-radiological assessment tools might reduce the number of radiographs taken in scoliosis patients. To increase the reliability and validity, further research on the measurement tools of scoliosis will be needed.

The Magnetic and Thermal Properties of a Heavy Fermion CeNi2Ge2 (헤비페르미온계 CeNi2Ge2의 자기 및 열적 특성)

  • Jeong, Tae Seong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.451-455
    • /
    • 2019
  • The electromagnetic and thermal properties of a heavy fermion $CeNi_2Ge_2$ are investigated using first-principle methods with local density approximation (LDA) and fully relativistic approaches. The Ce f-bands are located near the Fermi energy $E_F$ and hybridized with the Ni-3d states. This hybridization plays important roles in the characteristics of this material. The fully relativistic approach shows that the 4f states split into $4f_{7/2}$ and $4f_{5/2}$ states due to spin-orbit coupling effects. It can be found that within the LDA calculation, the density of states near the Fermi level are mainly of Ce-derived 4f states. The Ni-derived 3d states have high peaks around -1.7eV and spreaded over wide range around the Fermi level. The calculated magnetic of $CeNi_2Ge_2$ with LDA method does not match with that of experimental result because of strong correlation interaction between electrons in f orbitals. The calculations show that the specific heat coefficient underestimates the experimental value by a factor of 19.1. The discrepancy between the band calculation and experiment for specific heat coefficient is attributed to the formation of a quasiparticle. Because of the volume contraction, the exchange interaction between the f states and the conduction electrons is large in $CeNi_2Ge_2$, which increases the quasiparticle mass. This will result in the enhancement of the specific hear coefficient.

Effect of Millimeter Waves on Quality Characteristics of Cheonggukjang (밀리미터파 처리가 청국장의 이화학적 특성에 미치는 영향)

  • Seo, Dong-Ho;Kim, Mi-Seon;Kum, Jun-Seok
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.126-131
    • /
    • 2017
  • Millimeter waves are electromagnetic waves with frequencies of 30-300 GHz (wavelength 1-10 mm), and millimeter wave stimulation affects microorganism growth. The present study stimulated Bacillus subtilis with 60 and 70 GHz millimeter waves during cheonggukjang fermentation and characterized the effects on cheonggukjang quality. Cheonggukjang treated with millimeter wave irradiation showed no significant difference in total bacterial count but generated only 5.52-5.92% viscous substance. Irradiation with 60 GHz millimeter waves yielded bright and intense color values relative to 70 GHz millimeter waves. Examination of the amylase activity and reducing sugar content of finished cheonggukjang revealed that irradiation at 70 GHz inhibited amylase activity in cheonggukjang. Furthermore, irradiation at 70 GHz increased protease activity, whereas irradiation at 60 GHz inhibited the activity. Moreover, the amino acid content changed with millimeter wave irradiation.

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.