Browse > Article
http://dx.doi.org/10.6109/jkiice.2008.12.7.1165

Frequency Domain Characteristics of the Metamaterial Slab Using 2D-FDTD  

Hong, Ic-Pyo (공주대학교 정보통신공학부)
Abstract
In this paper, the scattering parameters of the metamaterial slab are obtained using the 2D FDTD(Finite-Difference Time-Domain) method. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity. But it is very difficult to obtain frequency response of metamaterial itself because frequency dispersive model such as Lorentz, Drude model are used in FDTD. We used the well-known m-n-m cycle sine pulse to obtain the frequency response of the metamaterials. Comparisons between the wideband Gaussian input pulse and band-limited m-n-m cycle sine pulse are performed in this paper also. From the results, we concluded that the scattering parameters in frequency domain can be obtained using specific input pulse in FDTD even if the response has valid only for limited bandwidth.
Keywords
시간영역 유한차분법;메타물질;주파수 영역;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities", Soviet Physics Uspekbi, vol. 10, no. 4, pp. 5-13, Jan-Feb., 1968
2 J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, "Magnetism from conductors and enhanced linear media," IEEE Trans. Microwave Theory Tech., vol. 47, no. 11. pp. 2075-2084, Nov. 1999   DOI   ScienceOn
3 R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verifications of a negative index of refraction," Science, vol. 292, pp. 77-79, 6 April. 2001   DOI   ScienceOn
4 R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 64, pp.056 625/1- 056 625/15, Nov. 2001
5 Y. Zhao, P. Belov and Y. Hao, "Improvement of Numerical Accuracy in FDTD Modelling of Left-Handed Metamaterials," 2006 IET Seminar on Metamaterials for Microwave and Millimeterwave Applications, pp.153-157, Sept. 2006
6 P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, pp.185-200, 1994   DOI   ScienceOn
7 N. Engheta and R. W. Ziolkowski, Metamaterials : Physics and Engineering Explorations, IEEE, 2006
8 C. Caloz and T. Itoh, Electromagnetic Metamaterials, John Wiley & Sons, 2006
9 A. A. Sukhorukov, I. V. Shadrivov, and Y. S. Kivshar, "Wave scattering by metamaterial wedges and interfaces," Int. J. Numer. Model. Vol. 19, pp. 105-117. Mar. 2006.   DOI   ScienceOn
10 Y. Hao, L. Lu, and C. G. Parini, "Time-domain modeling on wave propagation through single/ multilayer left-handed meta-materials slabs," ICAP 2003, vol.2, pp.610-613, Apr. 2003
11 J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Physical Review Letters, vol. 76, No. 25, pp. 4773-4776, Jun., 1996   DOI   ScienceOn
12 S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, pp. 1630- 1639, 1996   DOI   ScienceOn
13 A. Taflove and S. C. Hagness, Computational Electrodynamics : the Finite-Difference Time-Domain Method, Boston, 3rd Ed., Artech House, 2005
14 M. W. Feise, J. B. Schneider, and P. J. Bevelacqua, "Finite-difference and pseudospectral time-domain methods applied to backward- wave metamaterials," IEEE Trans. Antennas Propagat., vol. 52, pp. 2955- 2962, Nov. 2004   DOI   ScienceOn