Browse > Article
http://dx.doi.org/10.13048/jkm.21006

Review Study on the Measurement Tools of Scoliosis: Mainly on Non-radiological Methods  

Kim, Dong-Joo (College of Korean Medicine, Dongguk University)
Choi, Seong-Kyeong (Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital)
Jo, Hyo-Rim (Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital)
Ha, Yu-bin (Department of Internal Korean Medicine, Dongguk University Bundang Oriental Hospital)
Choi, Sung-Hwan (Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Bundang Oriental Hospital)
Park, Seo-Hyun (Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Bundang Oriental Hospital)
Lee, Seung Deok (Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Dongguk University)
Keum, Dong-Ho (Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Bundang Oriental Hospital)
Sung, Won-Suk (Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital)
Kim, Eun-Jung (Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital)
Publication Information
The Journal of Korean Medicine / v.42, no.1, 2021 , pp. 75-98 More about this Journal
Abstract
Objectives: The purpose of this study is to investigate the characteristics, validity, and reliability of non-radiological assessment tools of scoliosis that have been studied so far. Methods: Electronic databases including Pubmed, Cochrane Library, CNKI, Science On, RISS, OASIS were searched by keywords including 'scoliosis assessment', 'scoliosis screening', 'physical examination', 'functional measurement', 'photography', and 'smartphone'. Results: 32 articles using radiation-free assessments were identified from 1,011 records. The mostly used non-radiological methods were Surface topography, Scoliometer, Ultrasound, Digital Infrared Thermal Imaging, and Photography. The other methods were Gait analysis, 3D depth sensor imaging, and Low intensity electromagnetic scan. Conclusions: It was found that non-radiological assessment tools might reduce the number of radiographs taken in scoliosis patients. To increase the reliability and validity, further research on the measurement tools of scoliosis will be needed.
Keywords
Scoliosis; Scoliosis measurement tools; Scoliosis assessment; Non-radiological assessment; Clinical practice; Diagnosis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Carman D, Browne R, Birch J, Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. The Journal of bone and joint surgery. American volume, 1990;72(3):328-33.   DOI
2 Hresko MT, Idiopathic scoliosis in adolescents. New England Journal of Medicine, 2013;368(9):834-41.   DOI
3 Bunnell WP, The natural history of idiopathic scoliosis before skeletal maturity. Spine, 1986;11(8):773-6.   DOI
4 Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE, Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976), 2000;25(16):2052-63.   DOI
5 Goldberg MS, Mayo NE, Levy AR, Scott SC, Poitras B, Adverse reproductive outcomes among women exposed to low levels of ionizing radiation from diagnostic radiography for adolescent idiopathic scoliosis. Epidemiology, 1998:271-8.
6 Legaye J, Follow-up of the sagittal spine by optical technique. Annals of physical and rehabilitation medicine, 2012;55(2):76-92.   DOI
7 Minguez MF, Buendia M, Cibrian RM, Salvador R, Laguia M, Martin A, et al., Quantifier variables of the back surface deformity obtained with a noninvasive structured light method: evaluation of their usefulness in idiopathic scoliosis diagnosis. European Spine Journal, 2007;16(1):73-82.   DOI
8 Knott P, Mardjetko S, Nance D, Dunn M, Electromagnetic topographical technique of curve evaluation for adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2006;31(24):E911-5; discussion E6.   DOI
9 Weisz I, Jefferson RJ, Turner-Smith AR, Houghton GR, Harris JD, ISIS scanning: a useful assessment technique in the management of scoliosis. Spine (Phila Pa 1976), 1988;13(4):405-8.   DOI
10 Factor D, Perlas A, Ultrasound-assisted lumbar plexus block in a patient with scoliosis. Reg Anesth Pain Med, 2010;35(6):568-9.   DOI
11 Zhang J, Li H, Yu B. Correlation between Cobb Angle and Spinous Process Angle Measured from Ultrasound Data. in Proceedings of the 2017 4th International Conference on Biomedical and Bioinformatics Engineering. 2017.
12 Upadhyay SS, Burwell RG, Webb JK, Hump changes on forward flexion of the lumbar spine in patients with idiopathic scoliosis. A study using ISIS and the Scoliometer in two standard positions. Spine (Phila Pa 1976), 1988;13(2):146-51.   DOI
13 Cobb J, Outline for the study of scoliosis. Instr Course Lect AAOS, 1948;5:261-75.
14 Schmitz-Feuerhake I, Pflugbeil S, 'Lifestyle' and cancer rates in former East and West Germany: the possible contribution of diagnostic radiation exposures. Radiation protection dosimetry, 2011;147(1-2):310-3.   DOI
15 Pruijs J, Hageman M, Keessen W, Van Der Meer R, Van Wieringen J, Variation in Cobb angle measurements in scoliosis. Skeletal radiology, 1994;23(7):517-20.   DOI
16 Amendt LE, Ause-Ellias KL, Eybers JL, Wadsworth CT, Nielsen DH, Weinstein SL, Validity and reliability testing of the Scoliometer. Phys Ther, 1990;70(2):108-17.   DOI
17 Chowanska J, Kotwicki T, Rosadzinski K, Sliwinski Z, School screening for scoliosis: can surface topography replace examination with scoliometer? Scoliosis, 2012;7(1):9.   DOI
18 Thomsen M, Abel R, Imaging in scoliosis from the orthopaedic surgeon's point of view. Eur J Radiol, 2006;58(1):41-7.   DOI
19 Jae-Ho Choi G-BK, Sang-Hyun Kim, Gyoo-Hyung Kim, Mi-Hwa Lee, Jung-Seong Ahn, Seong-wan Hong, Jae-Seok Lee, Ick-Su Kwon, The Study on the Perceptions of Radiological Technologist in Medical Imaging Equipment Used by the Oriental Doctor. 2017;40(1):109-20.   DOI
20 Dangerfield P, Denton J, Barnes S, Drake N. The assessment of rib-cage and spinal deformity in scoliosis. in Proceedings of the 4th International Symposium on Moire Fringe Topography and Spinal Deformity, Oxford. Gustav Fischer Verlag. 1987.
21 Grivas TB, Vasiliadis ES, Mihas C, Triantafyllopoulos G, Kaspiris A, Trunk asymmetry in juveniles. Scoliosis, 2008;3:13.   DOI
22 YC Choi CL, KR Kwon, Standardization Study of Thermal Imaging using the Acupoints in Human Body Journal of pharmacopuncture, 2008;11(3):113-22.   DOI
23 Haddad DS, Brioschi ML, Arita ES, Thermographic and clinical correlation of myofascial trigger points in the masticatory muscles. Dentomaxillofac Radiol, 2012;41(8):621-9.   DOI
24 Bae Eun-jung SJ-c, Lim Sung-chul, Han Sang-won, A Clinical Study on Diahnosis of the patients with Scoliosis by D.I.T.I. The Journal of Korean Acupuncture & Moxibustion Society, 2004;21(1):51-8.
25 Kim JM, Clinical Application of Infrared Thermography. The Society of Korean Medicine Diagnosis, 2000;4(1):32-42.
26 Pino-Almero L, Minguez-Rey MF, Sentamans-Segarra S, Salvador-Palmer MR, de Anda RMC-O, Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables. Journal of biomedical optics, 2016;21(11):116001.   DOI
27 Kwon GR KH, The standardization study for the oriental clinical application of infrared body-heat measurement image I. The Acupuncture, 1996;13(2):1-22.
28 Murrell GA, Coonrad RW, Moorman CT, 3rd, Fitch RD, An assessment of the reliability of the Scoliometer. Spine (Phila Pa 1976), 1993;18(6):709-12.   DOI
29 Kotwicki T, Chowanska J, Kinel E, Lorkowska M, Stryla W, Szulc A, Sitting forward bending position versus standing position for studying the back shape in scoliotic children. Scoliosis, 2007;2(1):S34.   DOI
30 Yang TJ, Jeong SJ, Kwak MK, Jang YJ, Hyun MK, Yoon TK, et al., A Clinical Study on Adolescent Idiopathic Scoliosis using DITI. The Acupuncture, 2016;33(4):7-14.   DOI
31 Hyo-Jeong K, Wan-Hee KS-YL, Reliability of Ultrasound Imaging of the Thickness of the Soft Tissues of the Interscapular Region in Adolescent Idiopathic Scoliosis. Special Education & Rahabilitation Science Research Center, 2012;51(4):177-88.
32 Cohen L, Kobayashi S, Simic M, Dennis S, Refshauge K, Pappas E, Non-radiographic methods of measuring global sagittal balance: a systematic review. Scoliosis Spinal Disord, 2017;12:30.   DOI
33 Bunnell WP, An objective criterion for scoliosis screening. J Bone Joint Surg Am, 1984;66(9):1381-7.   DOI