• Title/Summary/Keyword: electrolyte solutions

Search Result 171, Processing Time 0.025 seconds

Influence of Electrolyte Composition on Electrochemical Performance of Li-S Cells

  • Kim, Tae Jeong;Jeong, Bo Ock;Koh, Jeong Yoon;Kim, Seok;Jung, Yongju
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1299-1304
    • /
    • 2014
  • The electrochemical performance of Li-S cells was investigated in various ternary electrolyte solutions composed of 1,2-dimethoxyethane (DME), tetra(ethylene glycol) dimethyl ether (TGM), and 1,3-dioxolane (DOX). The discharge capacity values and cycle data obtained at each composition were statistically treated with the Minitab program to obtain mixture contour plots, from which the optimal composition of the ternary solvent systems was predicted. The discharge capacities and capacity retention were quite dependent on the electrolyte composition. It was estimated from the contour plots of the capacity at 1.0 C that the discharge capacity sharply increased with a decrease in the TGM content. High capacities greater than 900 mAh/g at 1.0 C were expected for the electrolyte composition with a volume ratio of DME/TGM/DOX = 1/0/1. In contrast, it was predicted from the mixture contour plot of the capacity retention that the cycle performance would significantly increase with an increase in the DME content.

Influence of Reactivity of Reinforcing Nanoparticles with Aqueous Solution on Electroplating Copper Films (강화상 나노입자의 용액 반응성이 구리 도금 박막에 미치는 영향)

  • Park, Jieun;Oh, Minju;Kim, Yiseul;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.695-701
    • /
    • 2013
  • To understand how reactivity between reinforcing nanoparticles and aqueous solution affects electrodeposited Cu thin films, two types of commercialized cerium oxide (ceria, $CeO_2$) nanoparticles were used with copper sulfate electrolyte to form in-situ nanocomposite films. During this process, we observed variation in colors and pH of the electrolyte depending on the manufacturer. Ceria aqueous solution and nickel sulfate ($NiSO_4$) aqueous solutions were also used for comparison. We checked several parameters which could be key factors contributing to the changes, such as the oxidation number of Cu, chemical impurities of ceria nanoparticles, and so on. Oxidation number was checked by salt formation by chemical reaction between $CuSO_4$ solution and sodium hydroxide (NaOH) solution. We observed that the color changed when $H_2SO_4$ was added to the $CuSO_4$ solution. The same effect was obtained when $H_2SO_4$ was mixed with ceria solution; the color of ceria solution changed from white to yellow. However, the color of $NiSO_4$ solution did not show any significant changes. We did observe slight changes in the pH of the solutions in this study. We did not obtain firm evidence to explain the changes observed in this study, but changes in the color of the electrolyte might be caused by interaction of Cu ion and the by-product of ceria. The mechanical properties of the films were examined by nanoindentation, and reaction between ceria and electrolyte presumably affect the mechanical properties of electrodeposited copper films. We also examined their crystal structures and optical properties by X-ray diffraction (XRD) and UV-Vis spectroscopy.

Preparation of Electrolyte Membranes for Thin Manganese Batteries and Its Electrochemical Characteristics (박형 망간전지용 전해질막의 제조 및 전기화학적 특성)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1292-1295
    • /
    • 2006
  • Three kinds of electrolyte membranes were prepared by impregnating filter papers with one of the electrolyte solutions fur primary manganese battery ($NH_4Cl$, $ZnCl_2$, and alkaline types) and hygroscopic agent ($CaBr_2$ or $CaCl_2$), respectively. The thickness of them was $250{\sim}300{\mu}m$, and they were very flexible. The electrochemical characteristics greatly depended on the hygroscopic agent to supply water to the cell. The electrolyte membrane containing $CaCl_2$ showed the highest ionic conductivity and the largest discharge capacity.

  • PDF

In-situ Monitoring of Anodic Oxidation of p-type Si(100) by Electrochemical Impedance Techniques in Nonaqueous and Aqueous Solutions

  • 김민수;김경구;김상열;김영태;원영희;최연익;모선일
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1049-1055
    • /
    • 1999
  • Electrochemical oxidation of silicon (p-type Si(100)) at room temperature in ethylene glycol and in aqueous solutions has been performed by applying constant low current densities for the preparation of thin SiO2 layers. In-situ ac impedance spectroscopic methods have been employed to characterize the interfaces of electrolyte/oxide/semiconductor and to estimate the thickness of the oxide layer. The thicknesses of SiO2 layers calculated from the capacitive impedance were in the range of 25-100Å depending on the experimental conditions. The anodic polarization resistance parallel with the oxide layer capacitance increased continuously to a very large value in ethylene glycol solution. However, it decreased above 4 V in aqueous solutions, where oxygen evolved through the oxidation of water. Interstitially dissolved oxygen molecules in SiO2 layer at above the oxygen evolution potential were expected to facilitate the formation of SiO2 at the interfaces. Thin SiO2 films grew efficiently at a controlled rate during the application of low anodization currents in aqueous solutions.

Milt Property and Sperm Motility of Panther Puffer, Takifugu pardalis (졸복, Takifugu pardalis 정액의 성상과 정자 운동성)

  • Kho, Kang Hee
    • Korean Journal of Ichthyology
    • /
    • v.19 no.2
    • /
    • pp.168-172
    • /
    • 2007
  • In the present study, attempts were made to find out the physico-chemical properties of milt and the sperm motilities in various osmotic conditions using Panther puffer, Takifugu pardalis. The average concentration of sperm in the milt was $12.1{\pm}3.2{\times}10^9/mL$. pH and osmolality of seminal plasma were $8.2{\pm}0.3$, $385.5{\pm}12.5mOsm/kg$, respectively. Spermatozoa were immotile when the milt was mixed with solutions (electrolyte or non-electrolyte) of lower osmolality than the average seminal plasma osmolality ($385.5{\pm}12.5mOsm/kg$), but became motile after mixing milt with hyperosmotic solutions.

Bubble Properties in Bubble Columns with Electrolyte Solutions (전해질용액 기포탑에서 기포특성)

  • Yoo, D.J.;Lim, D.H.;Jeon, J.S.;Yang, S.W.;Kang, Y.
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Bubble properties such as size (chord length) and rising velocity were investigated in a bubble column with electrolyte solutions, of which diameter was 0.152m and 2.5m in height, respectively. The size and rising velocity of bubbles were measured by using the dual electrical resistivity probe method. Effects of gas and liquid velocities and ionic strength of liquid phase on the size and rising velocity of bubbles were determined. The bubble size increased with increasing gas velocity but decreased with increasing liquid velocity or ionic strength of liquid phase. The rising velocity of bubbles increased with increasing gas velocity and decreased with increasing ionic strength of liquid phase, however, it showed a slight maximum value with varying liquid velocity. The size and rising velocity of bubbles were well correlated with operating variables.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Experimental Studies on Limiting Concentration of High Saline Feed Solution in Electrodialysis (전기투석 시스템에서 고농도 수용액의 한계 농축에 대한 연구)

  • Junsu, Jang;Bumjoo, Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.64-68
    • /
    • 2023
  • The salt concentration process in electrodialysis, which uses electrical energy to enhance ion concentrations in an aqueous electrolyte solution, has been studied on the transfer phenomenon of ions and water molecules over the ion exchange membrane. In this paper, we investigated various parameters for limiting concentration of electrolyte solution and the electroosmosis phenomenon in an electrodialysis system by varying salt concentration of electrolyte solution. The electroosmotic water transport was analyzed by measuring the ions and water fluxes in electrolyte solutions having two different NaCl concentrations (NaCl 2M/4M), and concentration change was observed for various volume ratios of the diluted reservoir to the concentration one As a result, it was found that the higher concentration of the aqueous electrolyte solution, the lower electroosmosis, and the higher volume ratio led to a higher concentration in the dilute reservoir, so the limiting concentration was enhanced and the specific energy consumption decreased.

Electrical Resistivity of Cylindrical Cement Core with Successive Substitution by Electrolyte of Different Conductivity (전도성이 다른 공극수로 순차 치환한 시멘트 시험편의 전기비저항)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2009
  • To investigate the relation between pore fluid conductivity and bulk resistivity of a rock sample it is assumed that electrolyte solution perfectly substitute the pore fluid that occupied the pore space within the sample in general. In this study, it is investigated that how much can the electrolyte solution substitute the pore fluid by repeating the same saturation process. Four kinds of NaCl solutions of 8, 160, 3200, 64000 ${\mu}S$/cm are used. The saturation process has repeated four times for each electrolyte in increasing conductivity order first then four times each in decreasing order. The more the saturation process repeated with the same electrolyte, the more electrolyte solution substitute the pore fluid. Geometric mean of bulk resistivity in increasing and decreasing orders with the same electrolyte solution is assumed to be mostly close to the bulk resistivity with perfect substitution. Bulk resistivity measurements for both increasing and decreasing order differs within 10% to the geometric mean when repeating the saturation process 4 times while maximum 40% difference is observed when single saturation process for each electrolyte solution with increasing order. The modified parallel resistant model can generally represent the relations between pore fluid resistivity and bulk resistivity in the experiment, but more experimental data with various rock samples with different porosity is needed to generalize the model.

Influence of Electrolyte Aging on Electrotinning in Phenolsulfonic Acid Bath (전기주석도금 반응에 미치는 PSA계 도금용액 노화의 영향)

  • Bae Dae Chul;Kim Tae Yeob;Cho Joon Hyung;Lee Jae Ryung;Chang Sam Kyu;Cho Kyung-mox
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.162-168
    • /
    • 2000
  • The influence of phenolsulfunate concentrations on electroplating characteristics and electrochemical behaviors was investigated with a viewpoint of electrolyte aging using the circulation cell and potentiostate And comparison of tinplate coating appearance such as glossiness and Image clarify has been also studied with varying of phenolsulfonic acid (PSA) solutions. As the aging of electrolyte proceeded, the limiting current density was moved to a lower current density region by the limitation of mass transfer, and higher phenolsulfunate concentrations resulted in the narrower optimum current density range and deterioration of coating surface of tinplates. The difference of the limiting current density was not remarkable with increasing electrolyte temperature. Thus the electrolyte aging was attributed to the limitation of thermally-activated process such as mass transfer of reducible ions. It has also been considered that the accumulation of phenolsulfonate suppressed normal electrotinning reaction by reducing the mobility of stannous ions, taking into account of the smaller effect of electrolyte aging. Experiments showed similar polarization behavior between the electrolyte of high phenolsufonate solution and the aged one, which comes to conclude that the accumulation of phenolsulfonate is one of the major causes of electrolyte aging.