졸복, Takifugu pardalis 정액의 성상과 정자 운동성

Milt Property and Sperm Motility of Panther Puffer, Takifugu pardalis

  • 고강희 (전남대학교 수산해양대학 해양기술학부)
  • Kho, Kang Hee (Faculty of Marine Technology, Chonnam National University)
  • 투고 : 2007.04.02
  • 심사 : 2007.05.11
  • 발행 : 2007.06.30

초록

졸복의 정액의 물리화학적 성상과 정자운동성에 관한 기초자료를 얻었다. 졸복 정액의 평균농도, pH 및 삼투질농도는 각각 $12.1{\pm}3.2{\times}10^9/mL$, $8.2{\pm}0.3$, $385.5{\pm}12.5mOsm/kg$ 였다. 정자는 정장의 삼투질농도($385.5{\pm}12.5mOsm/kg$)에 비해서 저장 또는 등장의 삼투질농도에서는 운동성이 억제된 반면, 장장에 비해 고장삼투질농도에서 정자의 운동이 개시되어 삼투질농도가 증가함에 따라 활발한 운동성을 보였다.

In the present study, attempts were made to find out the physico-chemical properties of milt and the sperm motilities in various osmotic conditions using Panther puffer, Takifugu pardalis. The average concentration of sperm in the milt was $12.1{\pm}3.2{\times}10^9/mL$. pH and osmolality of seminal plasma were $8.2{\pm}0.3$, $385.5{\pm}12.5mOsm/kg$, respectively. Spermatozoa were immotile when the milt was mixed with solutions (electrolyte or non-electrolyte) of lower osmolality than the average seminal plasma osmolality ($385.5{\pm}12.5mOsm/kg$), but became motile after mixing milt with hyperosmotic solutions.

키워드

참고문헌

  1. Bouck, G.R. and J. Jacobson. 1976. Estimation of salmonid sperm concentration by microhematocrit technique. Trans. Am. Fish. Soc., 105 : 534-535 https://doi.org/10.1577/1548-8659(1976)105<534:EOSSCB>2.0.CO;2
  2. Chang, Y.J., H.K. Lim and K.H. Kho. 1995. Properties of semen and sperm motility in black seabream, Acanthopagrus schlegeli. J. Aquaculture, 8 : 149-157
  3. Chang, Y.J. 1997. Present and future studies on the cryopreservation of fish gametes. Suisanzoshoku, 45 : 557-564
  4. Chao, N.H., H.P. Tsai and I.C. Liao. 1992. Short- and longterm cryopreservation of sperm and sperm suspension of the grouper, Epinephelus malabaricus (Bloch and Schneider). Asian Fish. Sci., 5 : 103-116
  5. Ciereszko, A. and K. Dabrowski. 1993. Estimation of sperm concentration of rainbow trout, whitefish and yellow perch using a spectrophotometric technique. Aquaculture, 109 : 367-373 https://doi.org/10.1016/0044-8486(93)90175-X
  6. De Kruger, J.C., G.L. Smith, J.H.J. Van Vuren and J.T. Ferreira. 1984. Some chemical and physical characteristics of the semen of Cyprinus carpio L. and Oreochromis mossambicus (Peters). J. Fish Biol., 24 : 263-272 https://doi.org/10.1111/j.1095-8649.1984.tb04797.x
  7. De Quatrafages, M.A. 1853. Recherches sur la vitalite des spermatozoides de quelques poissons d,eau douce. Annales des sciences naturelles: Troisieme serie, 19 : 341-369
  8. Harvey, B. and R.N. Kelley. 1984. Chilled storage of Sarotherodon Sarotherodon mossambicus milt. Aquaculture, 36 : 85-95 https://doi.org/10.1016/0044-8486(84)90056-5
  9. Hogendoorn, H. and M.M. Vismans. 1980. Controlled propagation of the African catfish, Clarias lazera. Aquaculture, 21 : 39-53 https://doi.org/10.1016/0044-8486(80)90124-6
  10. Hwang, P.C. and D.R. Idler. 1969. A study of major cations, osmotic pressure and pH in seminal components of Atlantic salmon. J. Fish. Res. Bd. Can., 26 : 413-419 https://doi.org/10.1139/f69-040
  11. Kho, K.H. 2001. Studies of the transmembrane cell signaling for the initiation of sperm motility in salmonid fishes. Ph.D. thesis In 'Life Science Institute, Graduate School of Science', University of Tokyo, Tokyo
  12. Kho, K.H., M. Morisawa and K.S. Choi. 2003. Membrane hyperpolarization increases cAMP to induce the initiation of sperm motility in Salmonid fishes, rainbow trout and masu salmon. J. Micro. Biotech., 13 : 833-840
  13. Kho, K.H., M. Morisawa and K.S. Choi. 2004. The Role of $Ca^{2+}$ and calmodulin on the initiation of sperm motility in Salmonid Fishes. J. Micro. Biotech., 14 : 456-465
  14. Kho, K.H., S. Tanimoto, K. Inaba, Y. Oka and M. Morisawa. 2001. Transmembrane Cell Signaling for the Initiation of Trout Sperm Motility: Roles of ion channels and membrane hyperpolarization for cyclic AMP synthesis. Zoological Science, 18 : 919-928 https://doi.org/10.2108/zsj.18.919
  15. Lahnsteiner, F., B. Berger, T. Wiesmann and R. Patzner. 1996. Changes in morphology, physiology, metabolism, and fertilization capacity of rainbow trout semen following cryopreservation. Prog. Fish. Cult., 58 : 149-159 https://doi.org/10.1577/1548-8640(1996)058<0149:CIMPMA>2.3.CO;2
  16. Morisawa, M., K. Suzuki, H. Shimizu, S. Morisawa and K. Yasuda. 1983. Effects of osmolality and potasium on motility of spermatozoa from freshwater cyprinid fishes. J. Exp. Biol. 107 : 95-103
  17. Morisawa, M. and H. Hayashi. 1985. Phosphorylation of a 15 K axonemal protein is trigger initiating trout sperm motility. Biomed. Res., 6 : 181-184 https://doi.org/10.2220/biomedres.6.181
  18. Morisawa, M. and K. Suzuki. 1980. Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science, 210 : 1145-1147 https://doi.org/10.1126/science.7444445
  19. Morisawa, M., K. Suzuki, H. Shimizu, S. Morisawa and K. Yasuda. 1983. Effects of osmolality and potassium on motility of spermatozoa from cyprinid fishes. J. Exp. Biol., 107 : 95-103
  20. Morisawa, M. and M. Okuno. 1982. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature, 295 : 703-704 https://doi.org/10.1038/295703a0
  21. Morisawa, M., S. Tanimoto and H. Ohtake. 1992. Characterization and partial purification of sperm-activating substance from egg of the herring, Clupea pallasii. J. Exp. Zool., 264 : 225-230 https://doi.org/10.1002/jez.1402640216
  22. Ohta, H. and M. Tsuji. 1998. Ionic environment necessary for maintenance of potential motility in the common carp spermatozoa during in vitro storage. Fish. Sci., 64 : 547-552 https://doi.org/10.2331/fishsci.64.547
  23. Ohta, H. and T. Izawa. 1996. Diluent for cool storage of Japanese eel (Anguilla japonicus) spermatozoa. Aquaculture, 142 : 107-118 https://doi.org/10.1016/0044-8486(95)01246-X
  24. Stoss, J. 1983. Fish gamete preservation and spermatozoan physiology. Fish Physiology, IX B. pp. 305-350
  25. Strussmann, C.A., P. Renard, H. Ling and F. Takashima.1994. Motility of pejerrey, Odontesthes bonariensis spermatozoa. Fish. Sci., 60 : 9-13 https://doi.org/10.2331/fishsci.60.9