• Title/Summary/Keyword: electrolysis water

Search Result 390, Processing Time 0.029 seconds

Design of a Water Reuse System Combined with a Fiber Filtration and Electrolysis (섬유여과기와 전기분해조를 병합한 물 재이용 시스템 설계)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1385-1391
    • /
    • 2015
  • A water reuse system was designed for a demonstration plant by combining fiber filtration and electrolysis. A discharged dye wastewater after treated with biomedia was used in this study. It was found that an additional removal of suspended solids (SS) was feasible with 2-stage filtration while electrolysis was not effective. Also, $COD_{cr}$ and $COD_{Mn}$ were not removed with 2 -stage filtration but electrolysis resulted in about 26.9% additional removal. This indicates that electrolysis play an important role in organic removal. Removal of T-N and T-P was negligible with 1 and 2-stage fiber filtration and low-level electrolyte. However, with 2000 ppm of electrolyte, their removal efficiencies were about 83.1 and 60%, respectively, suggesting that the removal rates are well associated with the electrolyte concentrations. With high-level electrolyte, colority was removed about 82% while chlorine ions were removed only about 10%. Therefore, to treat underground water containing high-level salinity in the follow-up study, based on the results in this paper, a combined system with selection of additional unit process and reverse osmosis will be designed.

Performance Degradation of Mea with Cation Contamination in Polymer Electrolyte Membrane Water Electrolysis (고분자 전해질막 수전해 막전극접합체의 양이온 오염에 따른 성능 저하)

  • JUNG, HYEYOUNG;CHOI, NAKHEON;IM, SUHYUN;YOON, DAEJIN;MOON, SANGBONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • Proton Exchange Membrane Water Electrolysis (PEMWE) is one of the most popular and widely used methods for hydrogen production. PEMWE contributes to eco-friendly system via its energy storage system application, hence making it environmentally friendly to use. However, its main drawback is contamination of proton exchange membrane during water electrolysis. Existing cation such as magnesium, calcium and the likes are the cause for membrane contamination. As a result, the cation contamination give rise to degradation of performance of electrolysis and the reverse electrolysis is effective method to remove cation.

Volume Reduction of Waste Water Sludge using Electrolysis (전기분해를 이용한 하수 슬러지 감량)

  • Lee, Byungheon;Bang, Myunghwan;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.264-270
    • /
    • 2006
  • In this research, volume reduction of activated sludge using electrolysis was studied to find an optimum condition using lab scale experiments. Wasted sludge was treated by electrolysis with controlling current density, chloride concentration, electrode distance, and reaction time. Volume of return sludge was reduced by 9.79% in average while maximum was 16.7%. Sludge volume reduction efficiency was affected by current density and reaction time. It was reversely proportional to the electrode distance. Especially current density was effective on the system performance significantly. Electric conductivity, salinity and COD were increased by electrolysis implying sludge disintegrated and converted to COD in part. An empirical equation for total solid removal efficiency by electrolysis was proposed by multiple linear regression analysis as: $TS_{rem}$(%) = 5.534 ${\times}$ current density (A/l) + 0.178 ${\times}$ reaction time (m) + 2.758.

Understanding Underlying Processes of Water Electrolysis (수소 생산을 위한 물 전기분해 이해 및 기술동향)

  • Lee, Jaeyoung;Yi, Youngmi;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.357-365
    • /
    • 2008
  • Hydrogen energy becomes more attractive in that it can resolve the exhaustion of fossil fuels and their environmental problems. Until now, water electrolysis has been a interesting technique to produce hydrogen from non-fossil fuels. In principle, water electrolysis is an environmentally friendly technique to split water into hydrogen and oxygen, so that it can be utilized without any limitation of resources. Herein, we introduce basic understanding and three types of water electrolysis. Furthermore, the research trend and patent analysis will be followed along with an outlook.

Investigation of Simple Electrochemical Conditions for Generation of Ozonized Water

  • Tanaka, Mutsumi;Kim, Han-Joo;Kim, Tae-Il;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 2008
  • An electrochemical generation of ozonized water was investigated by using ${\beta}-PbO_2$ as an anode and tap water as an anolyte. According to the potentiometric ozone detection which utilizes potential differences arisen from a chemical reaction of ozone and iodide, increasing tendency of ozone concentration on electrolysis time could be observed to show the maximum value of 8 ppm at an electrolysis time of 10 min. Ozone could be generated promptly even at an electrolysis time of 10 sec., suggesting great advantages of this electrochemical process in terms of simplicity and readiness that might be applied directly to practical uses including medical and/ or food industries. Influences of electrolysis on the properties and surface conditions of a $PbO_2$ electrode were also discussed from the results of cyclic voltammetry, scanning electron microscope, and X-ray diffractometer.

Performance change according to the catalyst intrusion rate in the MEA for the PEM water electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.254-256
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

Performance Change according to the Catalyst Intrusion Rate in the MEA for the PEM Water Electrolysis (고분자전해질 수전해용 MEA의 촉매침투도에 따른 성능변화)

  • Kim, Hong-Youl;Lee, Ji-Jung;Lee, Jae-Young;Lee, Hong-Ki
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.75-78
    • /
    • 2009
  • The performances of proton exchange membrane (PEM) water electrolysis depend on many factors such as materials, geometries, fabrication methods, operating conditions, and so forth. The fabrication method is concerned, membrane electrode assemblies (MEA) are a most important part to show different performances by different fabrication methods. The performance change of PEM water electrolysis was experimentally measured according to the fabrication differences of the anode electrodes. One point of view is the catalyst intrusion rate to the anode gas diffusion layer (GDL), and the other point of view is the catalyst loading distribution in depth of the anode GDL. Results show that the performances of MEA with deep intrusion of the catalysts are better in the range of low current densities but worse at higher current densities. The catalyst loading distribution does not affect significantly to the performance of PEM water electrolyser.

  • PDF

A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System (알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구)

  • PARK, SOON-AE;LEE, EUN-KYUNG;LEE, JUNG-WOON;LEE, SEUNG-KUK;MOON, JONG-SAM;KIM, TAE-WAN;CHEON, YOUNG-KI
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device (수전해 수소충전소 부품별 유해위험요인 분석)

  • Seo, Doo-Hyoun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • In order to invigoration the hydrogen economy, production of hydrogen needed for hydrogen charging stations and hydrogen fuel cells is needed. Generally, it is reforming used to coal fuel or natural gas. Other technologies include water electrolysis using pure water. Among these water electrolysis technologies, development is mainly carried out using PEM(Polymer Electrolyte Membrane electrolysis). In this study, the company aims to identify potential harmful hazards to PEM electrolysis hydrogen stations in the development stage among hydrogen charging stations. In order to find the hazardous factors in the facilities of the electrolysis and hydrogen charging stations, we were analyzed by Failure Mode & Effect Analysis(FMEA).

Development Strategy of Clean Hydrogen Production by Renewable Energy-based Water Electrolysis in Korea (국내 재생에너지 연계 수전해 청정수소 생산 발전 전략: 국내외 관련 연구의 비교, 분석을 중심으로)

  • YOUNG YIEL CHOI;IN SUNG JUNG;TAE JIN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.389-397
    • /
    • 2023
  • This study compares domestic and foreign research on renewable energy-based water electrolysis clean hydrogen. Domestic studies from 2010 to 2023 focused on technological efficiency, energy efficiency, and system efficiency, with few analyzing infrastructure and technology trends. Overseas research initially focused on technological efficiency and stability, but has since shifted to economic and environmental impact, policy effectiveness, industry-university-research cooperation, and sustainability. To improve water electrolysis technology production, this study suggests prioritizing technology stability over efficiency, resolving government regulations and resident acceptance issues, promoting industry-university-institute cooperation for rapid commercialization of research results, and developing a strategy for sustainable development of renewable energy-based water electrolysis technology.