• 제목/요약/키워드: electrolysis system

검색결과 208건 처리시간 0.021초

냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델 (Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System)

  • 윤상현;윤진원;황건용
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

섬유여과기와 전기분해조를 병합한 물 재이용 시스템 설계 (Design of a Water Reuse System Combined with a Fiber Filtration and Electrolysis)

  • 신춘환
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1385-1391
    • /
    • 2015
  • A water reuse system was designed for a demonstration plant by combining fiber filtration and electrolysis. A discharged dye wastewater after treated with biomedia was used in this study. It was found that an additional removal of suspended solids (SS) was feasible with 2-stage filtration while electrolysis was not effective. Also, $COD_{cr}$ and $COD_{Mn}$ were not removed with 2 -stage filtration but electrolysis resulted in about 26.9% additional removal. This indicates that electrolysis play an important role in organic removal. Removal of T-N and T-P was negligible with 1 and 2-stage fiber filtration and low-level electrolyte. However, with 2000 ppm of electrolyte, their removal efficiencies were about 83.1 and 60%, respectively, suggesting that the removal rates are well associated with the electrolyte concentrations. With high-level electrolyte, colority was removed about 82% while chlorine ions were removed only about 10%. Therefore, to treat underground water containing high-level salinity in the follow-up study, based on the results in this paper, a combined system with selection of additional unit process and reverse osmosis will be designed.

인삼의 표면 세척시스템을 개발을 위한 공정처리기술에 관한 연구 (Study on Process Development of Ginseng's Surface Washing System)

  • 이현석;권기현;정진웅;최창현;한재웅
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.234-242
    • /
    • 2009
  • This study was attempted to develop surface washing-system of ginseng. The effect of sterilization, washing and keeping freshness of ginseng through analyzing unit process were examined to establish optimal condition for washing system. Surface washing method of fresh ginseng used two way and full cone spray type. Sterilization was used at $2^{\circ}C$ water with electrolysis water of 50 and 80 ppm. Ginseng was sterilized with electrolysis water during 30 and 60 s, dehydrated during 1 min and dried during 1min at 30 and $50^{\circ}C$. Hardness of surface-washed ginseng showed good result on 1 min spraying time with 80 ppm electrolysis water at $10^{\circ}C$ storage. Ginseng with 80 ppm electrolysis water was sterilized better with $1.05{\times}103$. There are no changes with 0% on appearance quality at 80 ppm electrolysis.

Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가 (Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production)

  • 최미화;최진혁;이태희;유영성;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.

전기분해를 이용한 하수 슬러지 감량 (Volume Reduction of Waste Water Sludge using Electrolysis)

  • 이병헌;방명환;김건하
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.264-270
    • /
    • 2006
  • In this research, volume reduction of activated sludge using electrolysis was studied to find an optimum condition using lab scale experiments. Wasted sludge was treated by electrolysis with controlling current density, chloride concentration, electrode distance, and reaction time. Volume of return sludge was reduced by 9.79% in average while maximum was 16.7%. Sludge volume reduction efficiency was affected by current density and reaction time. It was reversely proportional to the electrode distance. Especially current density was effective on the system performance significantly. Electric conductivity, salinity and COD were increased by electrolysis implying sludge disintegrated and converted to COD in part. An empirical equation for total solid removal efficiency by electrolysis was proposed by multiple linear regression analysis as: $TS_{rem}$(%) = 5.534 ${\times}$ current density (A/l) + 0.178 ${\times}$ reaction time (m) + 2.758.

알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구 (A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System)

  • 박순애;이은경;이정운;이승국;문종삼;김태완;천영기
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

알루미늄의 전기분해를 이용한 오수 중의 인 제거 (Phosphorus Removal from Domestic Sewage by Electrolysis with Aluminium Electrodes)

  • 정경훈;최형일;정오진
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.70-76
    • /
    • 1999
  • A laboratory experiment was performed to investigate the phosphorus removal using the activated sludge-electrolysis reactor which consisted of A$^2$/O system and aluminium electrodes as cathode and anode. In this system, the phosphorus was removed by aluminium ion, which was eluted from aluminiumelectrodes by electrolysis. In the batch experiments, when the current densities were 0.026, 0.052 and 0.08 A/dm$^2$, the phosphorus removal efficiencies for synthetic sewage were 66.4, 86.4 and 98.7% respectively. These results showed that the phosphorus removal efficiency increased with the increase of the current density. When the current values were 13, 26 and 40 mA respectively, the amounts of Al$^{3+}$ eluted from electrodes according to Faraday's law were 0.049, 0.07 and 0.12 g and Al/P mole ratio were 1.1, 2.0 and 3.41. In the continuous experiments, As hydraulic retention time(HRT) increased, COD and total nitrogen(T-N) removal efficiencies for domestic sewage increased. The average phosphorus removal rates of the activated sludge-electrolysis system were 97, 91, 80 and 80% at the HRT of 48, 24, 18 and 12 hours, respectively. Especially, the phosphorus removal rate in the activated sludge system with aluminium electrodes was higher than that in the system without aluminium electrodes.

  • PDF

고분자 전해질막 수전해 막전극접합체의 양이온 오염에 따른 성능 저하 (Performance Degradation of Mea with Cation Contamination in Polymer Electrolyte Membrane Water Electrolysis)

  • 정혜영;최낙헌;임수현;윤대진;문상봉
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.331-337
    • /
    • 2017
  • Proton Exchange Membrane Water Electrolysis (PEMWE) is one of the most popular and widely used methods for hydrogen production. PEMWE contributes to eco-friendly system via its energy storage system application, hence making it environmentally friendly to use. However, its main drawback is contamination of proton exchange membrane during water electrolysis. Existing cation such as magnesium, calcium and the likes are the cause for membrane contamination. As a result, the cation contamination give rise to degradation of performance of electrolysis and the reverse electrolysis is effective method to remove cation.

A Study on High Performance Converter Topology for Hydrogen Gas Generation Electrolysis System

  • 강태원;고유란;서용석;정준익;노도환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.196-197
    • /
    • 2010
  • This paper investigates a high performance converter topology for hydrogen gas generation electrolysis system. The proposed converter topology consists of full-bridge inverter, medium frequency transformer, and diode rectifier. Hydrogen gas generation electrolysis process considered in the paper is analyzed and characterized by its equivalent circuit. The electrolysis cell is modeled as effective resistance, capacitance, inductance, and internal emf voltage source. The proposed converter topology provides enhanced efficiency of hydrogen gas generation process under the operating condition of dc output voltage with high frequency ripple on it. The high performance operation of proposed converter is confirmed through the simulation with the electrolysis cell considered in the equivalent circuit model.

  • PDF

플라즈마 공정과 전기분해 공정의 간헐 운전이 상추성장과 양액 성분에 미치는 영향 (Effects of Intermittent Operation of Plasma and Electrolysis Processes on Lettuce Growth and Nutrient Solution Components)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제26권1호
    • /
    • pp.109-118
    • /
    • 2017
  • This study was conducted to investigate the effects of intermittent plasma and electrolysis treatments on lettuce (Lactuca sativa var. oak-leaf.), nutrient solution components ($NO_3{^-}-N$, $NH_4{^+}-N$, $PO{_4}^{3-}-P$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$) and environmental parameters (electrical conductivity, total dissolved solids and pH). The recirculating hydroponic cultivation system consisted of planting port, LED lamp, water reservoir and circulating pump. Nutrient solution was circulated in the following order: reservoir ${\rightarrow}$ filtration-plasma or filtration-electrolysis ${\rightarrow}$ planting port ${\rightarrow}$ reservoir. The results showed that nutrient solution components and environmental parameters were changed by plasma or electrolysis treatment. Lettuce growth was not affected by the intermittent plasma or electrolysis treatment with 30 minutes or 90 minutes, respectively. The roots of the lettuce was damaged by excessive plasma and electrolysis treatment. Electrolysis treatment had greater effect on than plasma treatment because of the accumulation of high levels of TRO (Total Residual Oxidants).