Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.1.1

Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System  

YUN, SANGHYUN (Department of Smart Automobile, Youngsan University)
YUN, JINYON (School of Mechanical and Automotive Engineering, Youngsan University)
HWANG, GUNYONG (School of Mechanical and Automotive Engineering, Youngsan University)
Publication Information
Abstract
Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.
Keywords
PEMWE; Transient response; Electro-osmotic force; Back-diffusion; BOP; Activation overvoltage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, and C. Etievant, "PEM water electrolyzers: from electrocatalysis to stack development", Int. J. Hydrogen Energy, Vol. 35, No. 10, 2010, pp. 5043-5052, doi: https://doi.org/10.1016/j.ijhydene.2009.09.015.   DOI
2 P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. Aukauloo, and C. Etievant, "Electrochemical performances of PEM water electrolysis cells and perspectives", Int. J. Hydrogen Energy, Vol. 36, No. 6, 2011, pp. 4134-4142, doi: https://doi.org/10.1016/j.ijhydene.2010.06.105.   DOI
3 S. A. Grigoriev, V. I. Porembskiy, S. V. Korobtsev, V. N. Fateev, F. Aupretre, and P. Millet, "High-pressure PEM water electrolysis and corresponding safety issues", Int. J. Hydrogen Energy, Vol. 36, No. 3, 2011, pp. 2721-2728, doi: https://doi.org/10.1016/j.ijhydene.2010.03.058.   DOI
4 P. Millet, R. Ngameni, S. A. Grigoriev, and V. N. Fateev, "Scientific and engineering issues related to PEM technology: water electrolysers, fuel cells and unitized regenerative systems", Int. J. Hydrogen Energy, Vol. 36, No. 6, 2011, pp. 4156-4163, doi: https://doi.org/10.1016/j.ijhydene.2010.06.106.   DOI
5 J. Nieminen, I. Dincer, and G. Naterer, "Comparative performance analysis of PEM and solid oxide steam electrolysers", Int. J. Hydrogen Energy, Vol. 35, No. 20, 2010, pp. 10842-10850, doi: https://doi.org/10.1016/j.ijhydene.2010.06.005.   DOI
6 P. Choi, D. G. Bessarabovb, and R. Dattaa, "A simple model for solid polymer electrolyte (SPE) water electrolysis", Solid State Ionics, Vol. 175, No. 1-4, 2004, pp. 535-539, doi: https://doi.org/10.1016/j.ssi.2004.01.076.   DOI
7 H. Gorgun, "Dynamic modelling of a proton exchange membrane (PEM) electrolyzer", Int. J. Hydrogen Energy, Vol. 31, No. 1, 2006, pp. 29-38, doi: https://doi.org/10.1016/j.ijhydene.2005.04.001.   DOI
8 N. V. Dale, M. D. Mann, and H. Salehfar, "Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics", Journal of Power Sources, Vol. 185, No. 2, 2008, pp. 1348-1353, doi: https://doi.org/10.1016/j.jpowsour.2008.08.054.   DOI
9 C. Y. Biaku, N. V. Dale, M. D. Mann, H. Salehfar, A. J. Peters, and T. Han, "A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer", Int. J. Hydrogen Energy, Vol. 33, No. 16, 2008, pp. 4247-4254, doi: https://doi.org/10.1016/j.ijhydene.2008.06.006.   DOI
10 K. W. Harrison, E. Hernandez-Pacheco, M. Mann, and H. Salehfar, "Semiempirical model for determining PEM electrolyzer stack characteristics", J. Fuel Cell Sci. Technol., Vol. 3, No. 2, 2006, pp. 220-223, doi: https://doi.org/10.1115/1.2174072.   DOI
11 A. Awasthi, K. Scott, and S. Basu, "Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production", Int. J. Hydrogen Energy, Vol. 36, No. 22, 2011, pp. 14779-14786, doi: https://doi.org/10.1016/j.ijhydene.2011.03.045.   DOI
12 F. Barbir, "PEM electrolysis for production of hydrogen from renewable energy sources", Solar Energy, Vol. 78, No. 5, 2005, pp. 661-669, doi: https://doi.org/10.1016/j.solener.2004.09.003.   DOI
13 J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, "Renewable hydrogen production", Int. J. Energy Res., Vol. 32, No. 5, 2007, pp. 379 -407, doi: https://doi.org/10.1002/er.1372.   DOI
14 F. Marangio, M. Santarelli, and M. Cali, "Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production", Int. J. Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1143-1158, doi: https://doi.org/10.1016/j.ijhydene.2008.11.083.   DOI
15 M. Santarelli, P. Medina, and M. Cali, "Fitting regression model and experimental validation for a high-pressure PEM electrolyzer", Int. J. Hydrogen Energy, Vol. 34, No. 6, 2009, pp. 2519-2530, doi: https://doi.org/10.1016/j.ijhydene.2008.11.036.   DOI
16 M. E. Lebbal and S. Lecoeuche, "Identification and monitoring of a PEM electrolyser based on dynamical modelling", Int. J. Hydrogen Energy, Vol. 34, No. 14, 2009, pp. 5992-5999, doi: https://doi.org/10.1016/j.ijhydene.2009.02.003.   DOI
17 K. Haraldsson and K. Wipke, "Evaluating PEM fuel cell system models", Journal of Power Sources, Vol. 126, No. 1-2, 2004, pp. 88-97, doi: https://doi.org/10.1016/j.jpowsour.2003.08.044.   DOI
18 B. Lee, K. Park, and H. Kim, "Dynamic simulation of PEM water electrolysis and comparison with experiments", Int. J. Electrochem. Sci., Vol. 8, 2013, pp. 235-248. Retrieved from http://electrochemsci.org/papers/vol8/80100235.pdf.
19 B. Han, S. M. Steen, J. Mo, and F. Y. Zhang, "Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy", Int. J. Hydrogen Energy, Vol. 40, No. 22, 2015, pp. 7006-7016, doi: https://doi.org/10.1016/j.ijhydene.2015.03.164.   DOI
20 Z. Abdin, C. J. Webb, and E. M. Gray, "Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell", Int. J. Hydrogen Energy, Vol. 40, No. 39, 2015, pp. 13243-13257, doi: https://doi.org/10.1016/j.ijhydene.2015.07.129.   DOI
21 P. R. Pathapati, X. Xue, and J. Tang, "A new dynamic model for predicting transient phenomena in a PEM fuel cell system", Renewable Energy, Vol. 30, No. 1, 2005, pp. 1-22, doi: https://doi.org/10.1016/j.renene.2004.05.001.   DOI
22 A. J. del Real, A. Arce, and C. Bordons, "Development and experimental validation of a PEM fuel cell dynamic model", Journal of Power Sources, Vol. 173, No. 1, 2007, pp. 310-324, doi: https://doi.org/10.1016/j.jpowsour.2007.04.066.   DOI
23 C. Wang, M. H. Nehrir, and S. R. Shaw, "Dynamic models and model validation for PEM fuel cells using electrical circuits", IEEE Transactions on Energy Conversion, Vol. 20, No. 2, 2005, pp. 442-451, doi: https://doi.org/10.1109/TEC.2004.842357.   DOI
24 G. L. Arsov, "Improved parametric PSpice model of a PEM fuel cell", 2008 11th International Conference on Optimization of Electrical and Electronic Equipment, 2008, pp. 203-208, doi: https://doi.org/10.1109/OPTIM.2008.4602367.   DOI
25 A. C. Olesen, C. Romer, and S. K. Kaer, "A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell", Int. J. Hydrogen Energy, Vol. 41, No. 1, 2016, pp. 52-68, doi: https://doi.org/10.1016/j.ijhydene.2015.09.140.   DOI
26 C. Spiegel, "PEM fuel cell modeling and simulation using Matlab", Academic Press/Elsevier, USA/Netherlands, 2008.