• Title/Summary/Keyword: electrokinetic flow

Search Result 66, Processing Time 0.021 seconds

Role of Electrode Reaction of Electrolyte in Electrokinetic-Fenton Process for Phenanthrene Removal (동전기-펜턴 공정에서 전해질의 전극반응이 처리효율에 미치는 영향)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • The effects of electrolytes were investigated on the removal efficiency when several different electrolytes were used to change the electrode reaction in an electrokinetic (EK)-Fenton process to remediate phenanthrene-contaminated soil. Electrical potential gradient decreased initially due to the ion entrance into soil and then increased due to the ion extraction from soil under the electric field. Accumulated electroosmotic flow was $NaCl>KH_2PO_4>MgSO_4$ at the same concentration because the ionic strength of $MgSO_4$ was the highest and $Mg(OH)_2$ formed near the cathode reservoir plugged up soil pore to inhibit water flow. When hydrogen peroxide was contained in electrolyte solution, removal efficiency increased by Fenton reaction. When NaCl was used as an electrolyte compound, chlorine ($Cl_2$) was generated at the anode and dissolved to form hypochlorous acid (HClO), which increased phenanthrene removal. Therefore, the electrode reaction of electrolyte in the anode reservoir as well as its transport into soil should be considered to improve removal efficiency of EK-Fenton process.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Bioseparations in Lab-On-A-Chip (랩온어칩에서의 생물분리기술)

  • Chang Woo-Jin;Koo Yoon-Mo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • Lab-on-a-chip is a miniaturized analytical device in which all of the procedures for the analysis of molecules are carried out, such as pretreatment, reaction, separation, detection, etc. Lab-on-a-chip has increasing concern as a device not only for rapid detection of molecules but also for high throughput screening and point of care, because conventional laborious and time consuming analytical procedures can be substituted. Thus, a lot of microfabrication and analytical techniques for lab-on-a-chip have been developed with microstructures smaller than a few hundreds of micrometers. Separation of the molecules is one of the most important components of lab-on-a-chip, because effective separation method can simplify the design and can provide better sensitivity. The electrokinetic separation based on capillary electrophoresis is most widely employed technique in lab-on-a-chip for the control of fluids and the separation of molecules. In this article, bioseparation techniques and its applications realized in lab-on-a-chip are reviewed.

A New Circulation Method for Electrokinetic Remediation of Soil Contaminated with Lead (새로운 순환방식을 적용한 동전기 정화기술에 의한 오염토양내의 납제거)

  • 이현호;백기태;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • A new method has been proposed and developed that solves the problem of decreasing electroosmotic flow rate by excess $H^{+}$ and precipitation of heavy metal by $OH^{-}$. An electrolytic solution was circulated between the anode and cathode compartments that enabled the pH at the anode and cathode to be controlled. The change of the soil pH by circulation systems affects the operation time, by lowering the rate of increase of the electric potential gradient, and the removal efficiency of heavy metals, by affecting the soil pH. Since there was no effluent from the cathode compartment in circulation system, there was no need to treat the wastewater after the experiment, which resulted in the reduction of influent electrolyte volume.

Removal of Phenanthrene by Electrokinetic-Fenton Process in a 2-dimensional Soil System (동전기-펜턴 공정을 이용한 2차원 토양 정화장치에서의 phenanthrene 제거)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.11-17
    • /
    • 2005
  • Characteristics of phenanthrene removal in the Electrokinetic (EK)-Fenton process were investigated in a 2-dimensional test cell in a viewpoint of the effect of gravity and electrosmotic flow (EOF). When the constant voltage of 100 V was applied to this system, the current decreased from 1,000 to 290 mA after 28 days, because soil resistance increased due to the exhaustion of ions in soil by electroosmosis and electromigration. Accumulated EOF in two cathode reservoirs was 10.3 L and the EOF rate was kept constant for 28 days. At the end of operation, the concentration of phenanthrene was observed to be very low near the anode and increased in the cathode region because hydrogen peroxide was supplied from anode to cathode region following the direction of EOP. Additionally, the concentration of phenanthrene decreased at the bottom of the test cell because the electrolyte solution containing hydrogen peroxide was largely transported toward the bottom due to a low capillary action in the soil with high porosity. Average removal efficiency of phenanthrene by EK-Fenton process was 81.4% for 28 days. In-situ EK-Fenton process would overcome the limitations of conventional remediation technologies and effectively remediate the contaminated sites.

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method (펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성)

  • Seo, Seok-Ju;Na, So-Jeong;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.885-893
    • /
    • 2014
  • This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.

Effect of ionic Strength of Electrolyte on Phenanthrene Removal in Electrokinetic-Fenton Process (동전기-펜턴 공정에서 phenanthrene 제거에 대한 전해질 이온세기의 영향)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.18-25
    • /
    • 2005
  • Characteristics of phenanthrene removal in an electrokinetic (EK)-Fenton process were investigated in a viewpoint of concentration and ionic strength of electrolytes. When three kinds of electrolytes (NaCl, $KH_2PO_4,\;and\;MgSO_4$) were used, the increase in electrolyte concentration caused the decrease of electrical potential gradient. The increase of electrical conductivity was due to the increase of ionic concentration in soil. The decrease of accumulated electroosmotic flow (EOF) with increase in electrolyte concentration was due to the decrease of zeta potential. The removal efficiency was in proportion to accumulated EOF which depended on ionic strength. Total energy expenditure without electrolyte was 10-30 times higher than its with 0.5 M electrolyte. The lower removal efficiency was caused by the lower energy expenditure with 0.5 M one. An effective EK-Fenton process was determined from considering the removal efficiency and the energy expenditure, simultaneously.

Evaluation of Electrokinetic Flow Mobility Using Isotacho-Electrophoresis Techniques

  • An, J.H.;Joo, Y.H.;Lee, C.Y.;Lee, Y.J.;Park, C.W.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.444-448
    • /
    • 2011
  • In the present study, we separated the marker particles from the suspending particle mixture solution using isotacho-electrophoresis technique, a novel quantitative ionic particle separation method, in the microchannel. A multiple stacking zone of the suspending particle was visualized with variations in electric field strength, pH value and concentration of the ionic solution. In particular, the electrophoretic mobility of ionic particle (fluorescein) was estimated based on the electrophoretic velocity value measured by the particle image velocimetry. As a result, isotacho-electrophoresis zones were clearly visualized as going downstream in the electric field. The particle migration velocity increased proportional to the applied voltage increase; it was also affected by the pH value variations in the ionic solution.

AC-Electroosmotic Flows-Fundamental Mechanism and Kinematic Aspects (교류 전기삼투유동 - 근본 메커니즘과 운동학적 양상)

  • Suh, Yonk-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.3-16
    • /
    • 2008
  • Controlling fluid flows in micro scales is a non-trivial issue among those who are involved in designing lab-on-chips. Pumping and mixing by using electrokinetic principles has been popular in that the method requires a few parts and it is easy to control. This paper explains the basic mechanism of the electroosmotic flows caused by AC together with presenting some numerical results. In particular, the fundamental, physical idea involved in the mechanism will be illustrated in terms of the kinematic aspect. Since the electroosmotic flows are mainly driven by the motion of ions, we also demonstrate the ion motions by using the numerical-visualization method.

Application of a Pulse Electric Field to Cross-flow Ultrafiltration of Protein Solution

  • Kim, Hyong-Ryul;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.46-50
    • /
    • 1999
  • The application of pulsed electric field was investigated in the crossflow ultrafiltration of BSA (bovine serum albumn) to economize the application time of electric current as well as to avoid inherent problems of long-term application of electric field. During the application of various cyclic patterns of pulsed electric current, the averaged filtration flowrate and the degree of concentration were maintained higher than those obtained in the absence of electric current application. The temperature increase, pH change, and BSA loss by electrodeposition were all negligible during the operation. The averaged filtration flowrate increased as the ON/OFF duration ratio of electric current was higher and as the period of ON/OFF cycle was shorter. The re-establishment of concentration polarization was dependent to the duration of current OFF state and, therefore, a longer duration of OFF state was not favorable in maintaining higher filtration flow rate. Although the averaged filtration flowrate was enhanced as the magnitude of electric current increased, the flowrate enhancement became smaller as the magnitude of current value above which the degree of electrokinetic depolarization is no further improved.

  • PDF