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Abstract. Controlling fluid flows in micro scales is a non-trivial issue among those who are involved
in designing lab-on-chips. Pumping and mixing by using electrokinetic principles has been popular in that
the method requires a few parts and it is easy to control. This paper explains the basic mechanism of
the electroosmotic flows caused by AC together with presenting some numerical results. In particular, the
fundamental, physical idea involved in the mechanism will be illustrated in terms of the kinematic aspect.
Since the electroosmotic flows are mainly driven by the motion of ions, we also demonstrate the ion
motions by using the numerical-visualization method.
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1. Introduction

Recently there has been great interest in applying
electrokinetic forces in controlling microfluidic
flows, e.g. to pump a liquid and/or to achieve good
mixing. While the DC forcing is adequate for glo-
bally pumping liquid inside a rather long channel
having a certain amount of wall charge, the AC forc-
ing is suitable for generating local flows so that it can
be more useful in controlling fluid flows without so
much affecting the global flows. AC electroosmotic
flows are generated by applying AC to a pair of elec-
trodes patterned usually on a coplanar wall with a
small gap, typically 20 micrometers. As in the DC
electroosmotic flows, the fundamental force that
drives the fluid flows with the AC flows comes from
the charge caused by the non-equilibrium ion distri-
bution near the electrodes. 

The Helmholtz formula predicts that the magni-
tude of the slip velocity of the electroosmotic flows
is proportional to the zeta potential and the exter-

nal electric field(e.g. [1-3]); here the external elec-
tric field means the electric field outside the
electric double layer (EDL). In the conventional
DC electroosmotic flows, no electrodes are needed
to be built inside the channel, because the channel
surface has tendency to be negatively charged and
thus automatically collect more cations than anions
within the EDL. The net effect is to create the non-
zero zeta potential across the EDL. Applying DC
electric field in the tangential direction (exactly
corresponding to the external electric field used in
the Helmholtz formula) then causes the cations to
move toward the cathode, thereby driving the
whole liquid in the same direction through the vis-
cous action; this is the so called (DC) electroos-
motic flow.

On the other hand, the AC electroosmotic flows
are usually created by non-equilibrium accumula-
tion of ions around a pair of electrodes having a
small gap. If the DC were applied across the elec-
trode pair, then cations and anions would accumu-
late so quickly around the cathode and anode,
respectively. This then screens the electrodes com-
pletely, if no Faradaic reaction were assumed to
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occur (complete polarization). Therefore the exter-
nal electric field vanishes and so fluid flows are not
expected to occur. However when the AC is
applied with a suitable level of frequency such that
one period of the AC forcing is not so long as to
allow the ions completely screen the electrodes,
non-zero electric field is produced outside the EDL
together with a certain finite amount of the zeta
potential. Therefore we can expect that this should
generate fluid flow along the electrode surface.
When the sign of the AC potential is changed dur-
ing one period of forcing, then both the zeta poten-
tial and external electric field change signs
simultaneously so that the flow direction is
unchanged. This is enough to understand why a
steady flow velocity occurs around the electrodes
when the AC is applied.

In the followings the fundamental mechanism of
the fluid flows, i.e. ion transport, will be addressed
with more basic terminologies especially for those
who are more specialized in the fluid mechanics
than in the electrochemistry. Later, some recent find-
ings and numerical methods are introduced that can
be used in calculating the slip velocity for the AC
electroosmosis. Finally, the kinematic aspects of the
ion motions are touched in order to provide them
with further understanding of the phenomenon.

2. Ion Transport and Mass Conservation

Electroosmotic flows are driven by the motion of
ions. Therefore investigating the ion transport caused
by the diffusion, conduction and convection is pre-
requisite in order to understand the electroosmotic
flows. Furthermore since the Reynolds number is
very small in microfluidics, the ion motions are
decoupled from the motions of the surrounding
fluid. In this section we show the derivation of the
Nernst-Planck equation from the principle of mass
conservation, which governs the ion transport.
Before that, we treat three basic mechanisms for
the ion transport; diffusion, conduction and convec-
tion. More systematic touch of these topics may be
found in literatures [1-4]. 

2.1. Diffusion
Let ci be the concentration of an ion species i,

more specifically the number density (number of

ions per unit volume) [1/m3]. Non-uniform distri-
bution of ion concentrations leads to diffusion. Let
Ji

D [1/m2s] be the flux (number of ions passing
through a surface per unit area per unit time) along
the direction of  caused by the diffusion pro-
cess, see Fig. 1. Then the Fick’s 1st law states that

, (1)

where Di [m2/s] is the diffusion coefficient or diffu-
sivity. Stokes-Einstein equation relates D and the
dynamic viscosity of the medium η [Ns/m2] as fol-
lows.

, (2)

where kB is the Boltzmann constant [J/K], T the
temperature [K] and a the ionic radius [m].

2.2. Conduction
Conduction is the transport of ions under the

influence of an electric field. The driving force for
the conduction is electric field (see Fig. 2)

, (3)

ci∇–

Ji
D Di– ci∇=

D
kBT

6πaη-------------=

E φ∇–=

Fig. 1. Schematic of the diffusive ion-transport caused by
a concentration gradient.

Fig. 2. Electrostatic force acting on a cation causing the
conduction.
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where φ is the potential [V]. An ion of valence zi

has the charge zie and so the electrostatic force
acted by the electric field on the ion is

F=zieE [N] (4)

where e=1.602×10−19 [C] is the electron charge. For
the case of dilute electrolyte, this force may give
rise to the ion’s constant velocity relative to the
surrounding medium. Assume a stationary state of
the surrounding fluid, then we can set the ion’s
velocity vi in proportion of the force F or the elec-
tric field E;

vi=uiE [m/s] (5)

where u is called ‘mobility’ [m2/Vs]. Nernst-Ein-
stein equation relates the mobility u and the diffu-
sivity D;

(6)

where F=NAe=96485 [C/mol] is the Faraday con-
stant, R=8.31 [J/mol K] the gas constant and
NA=6.02×1023 [1/mol] the Avogadro number. For
ions large enough, we can use the Stokes’ resis-
tance law as follows.

(7)

The conductive flux of the ions of specifies i is
then

(8)

where the relation R=kBNA has been used. Conduc-
tion is sometimes called ‘ion migration’ [2].

2.3. Advection
The ions are also advected by the surrounding

fluid’s motion (Fig. 3) though this effect can be
safely neglected in most cases. The transport given
by the advection effect can be written in terms of
the flux Ji

A as follows.

(9)

where u is the velocity of the fluid.

2.4. Nernst-Planck Equation
This equation is nothing more than the conserva-

tion of the species. Assuming no chemical reaction
among the specifies, we can say that the total num-
ber of ions within a system is conserved. We con-
sider a stationary control volume V as shown in
Fig. 4. The total number of ions of specifies i
within this volume will be 

The time rate of change of the ion numbers in this
volume, i.e.

should be the same as the time rate of change of
the number of ions, per unit time, entering through
the whole control surface A surrounding the vol-
ume. So, we can write

where the second equality comes from the diver-
gence theorem, and Ji represents the total flux
given by

 (10)

u z FD
RT

------------=

u z e
6πηa
-------------=

Ji
C civi uiciE Di

zie
kBT
--------⎝ ⎠
⎛ ⎞ciE Di–

zie
kBT
--------⎝ ⎠
⎛ ⎞ci φ∇= = = =

Ji
A ciu=

cidV
V
∫

∂ci

∂t
-------dV

V
∫

∂ci

∂t
-------dV

V
∫ JidA

A
∫– ∇ JidV⋅

V
∫–= =

Ji Ji
D Ji

C Ji
A+ +=

Fig. 3. Advective (or convective) transport caused by the
surrounding fluid flow.

Fig. 4. Stationary control volume V with the ion concen-
tration c inside and the total flux J through the
surface.
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Since the control volume can take an arbitrary
shape and size, we must require

  (11)

Substituting the formula for Ji
D, Ji

C and Ji
A into this

yields

(12)

where the fluid’s incompressibility was applied.
This is called ‘Nernst-Planck equation’. 

We also use the term ‘current density’ ji [C/m2s].
This is related to the ion flux Ji by

3. Induced Electric Potential

There are two kinds of electric field, as illus-
trated in Fig. 5. The first one is the external elec-
tric field which is not disturbed by the presence of
unbalanced distribution of ions near the surface.

The second one is the potential induced by the
unbalanced ion-distribution. These two potentials
do not directly influence each other. The induced
potential φ is determined from the Poisson equa-
tion [3]

 (13)

where ρe [C/m3] is the local volume density of the
net charge;

 (14)

Here ε0=8.85×10−12 [C/Vm] is the dielectric permit-
tivity of the vacuum and ε the relative permittivity
(dimensionless) of the fluid.

4. Navier-Stokes Equations with Electric
Force

Consider again a stationary control volume V.
When the electric field E, internal or external,
applies on this volume, each of the ions within the
volume will receive the body force zieE. This force
then tends to move the ion in the direction of E and
subsequently the ion drives the surrounding fluid,
see Fig. 6. The fluid’s driven velocity may decrease
with the distance from the location of the ion.
Describing such induced velocity field for each ion
and considering the effect from all of the ions in
estimation of the fluid velocity is almost impossi-
ble. Instead of this, we employ the momentum princi-
ple. 

Assuming that within an infinitesimal volume δV
there are still large number of ions, we can say that

∂ci

∂t
------- ∇ Ji⋅+ 0=

∂ci

∂t
------- u ci∇+ ∇ Di ci∇ Di

zie
kBT
--------⎝ ⎠
⎛ ⎞ci φ∇+⋅=

ji zieJi=

∇ εε0 φ∇( ) ρe–=⋅

ρe zicie
i
∑=

Fig. 5. Two kinds of the electric field built inside a con-
verging channel; (a) the electric field given exter-
nally by the difference of potentials applied at
electrodes upstream and downstream ends and (b)
the one induced by the non-equilibrium distribu-
tion of ions in the EDL near the channel wall.

Fig. 6. Velocity profile of the surrounding fluid driven by
the ion’s motion.
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the electric body force acting on δV is cizieEδV. So,
the electric body force per unit volume is simply
cizieE. We must consider contributions from all the
species. Then we have

(15)

where the ρ [kg/m3] is the fluid density and p [N/
m2] the pressure. The continuity equation for the
incompressible fluid reads

(16)

In summary, we have Eqs. (12), (13), (15) and
(16) for the unknowns ci, φ, u and p. In micro
scales, since the geometric scale of the flow is very
small, the convective terms, i.e. the second terms in
LHS of (12) and (15) can be neglected in most
cases. Then the problem of the ion transport is
decoupled from that of the momentum transport.
So, in order to find the velocity field of the electro-
osmotic flow, the ion-transport equation (12) cou-
pled with the potential equation (13) is first solved,
and then the slip velocity given by the potential
solution is used as the boundary condition while
solving the momentum equation (15) with the con-
tinuity equation (16).

5. Electrical Thin Layers

5.1. Electric Double Layer (EDL)
When an electrolyte is in contact with a charged

surface of a dielectric material, such as the colloid
particle and the electrode with DC without chemi-
cal reaction, the surface attracts the counter-ions
and repels the co-ions resulting in the unbalanced
distribution of cations and anions in the thin layer
adjacent to the interface. This layer is called dif-
fuse layer. Thickness of the diffuse layer is depen-
dent on the ion concentration but remains at most
O(100) [nm] for clean water. Because of the unbal-
anced ion-distribution, the electric potential differ-
ence, called ‘zeta potential’, exists across the
diffuse layer. On the other hand, we should notice
that there is a thinner layer, called ‘Stern layer’ or
‘compact layer’, between the diffuse layer and the
solid surface (Fig. 7). The Stern layer is thought to
be devoid of ions [3]. These two layers constitute
the electric double layer.

Using the coordinates (s,n) for symmetric ions
(z1=−z2=z>0), we can write (13) as follows.

(17)

where the terms containing derivative w.r.t. s have
been neglected, and c± stand for c1 and c2, respec-
tively. On the other hand, within the thin layer, the
time scale concerned with the ion transport is very
small. Then (12) reduces to

(18)

This is simply the balance between the diffusion
and conduction terms. We can readily integrate Eq.
(18) to obtain 

(19)

where c0 denotes the concentration of both ions in
the bulk, and 

is the thermal potential. Here φ denotes the poten-
tial referred to the bulk potential. Eq. (19) is a kind
of Boltzmann equation. We notice that c±

→c0 as φ→
0 in the bulk, and that when the surface is nega-
tively charged (c+>c0 and c−<c0) the potential must
be negative (φ<0) in the EDL, and vice versa. To
derive the expression for φ in terms of the coordi-
nate n, we substitute (19) into (17) to have

(20)

assuming that ε is constant. This can be integrated
and the result is [3]

ρ ∂u
∂t
------ u+ u∇⋅⎝ ⎠
⎛ ⎞ ∇p– η∇2u ρe∇φ–+=

∇ u⋅ 0=

∂
∂n
------ εε0

∂φ
∂n
------⎝ ⎠

⎛ ⎞ ρe– ze c+ c−–( )–= =

∂c  ±

∂n
--------- ze

kBT
--------± c  ± ∂φ

∂n
------ 0=

c  ± c0exp φ ςT⁄+−( )=

ςT
kBT
ze

--------=

εε0
∂2φ
∂n2
-------- 2c0zesinh φ ςT⁄( )=

Fig. 7. Double-layer structure and the body-fitted coor-
dinates (s,n).



8 Yonk Kweon Suh

(21)

where  is the zeta potential, i.e. the potential eval-
uated at the interface n=0, and

(22)

is the so called ‘Debye screening length’ represent-
ing the order of the EDL thickness; its inverse is
usually written as κ(κ=1/λD) and called ‘Debye-
Hückel parameter’ [3]. When the zeta potential is
much less than the thermal potential, i.e. ,
then (21) becomes simply

(23)

The areal charge density (charge per unit area of
the surface within EDL) σD [C/m2] can be obtained
from

(24)

Substituting (17) into (24) and considering (21)
gives

(25)

Sometimes it will be useful to define the differen-
tial capacitance of the diffuse layer CD as follows
[3].

(26)

where the numerical values are for water at 25 [oC]
with c0 in [mol/l] or [M],  in [V] and CD in [µF/
cm2]. Eq. (26) is useful in the prediction of the zeta
potential from the experimental measurement of
the EDL capacitance.

5.2. Electric Multiple Layer under AC
It was shown from the asymptotic analysis of

Suh & Kang [4] that the region near the surface of
an electrode under AC with angular frequency ω,
the frequency being f=ω/2π, can be split into three
(for the steady state) or four (for the transient state)
layers as shown in Fig. 8. The innermost, thinnest
layer is ‘Stern layer’ devoid of ions. The next layer
called ‘inner layer’ corresponds to the ‘diffuse layer’
in the classical EDL structure. In this layer, the time

scale is very small, i.e. ions respond to the change of
the potential on the electrode surface very quickly.
So, this layer is governed by the steady-state equa-
tion like (18), and so the Boltzmann distribution
(19) holds. As shown in Fig. 8, thickness of this
layer, i.e. the Debye length, is independent of the
frequency of the external AC. The next layer is
called ‘middle layer’ governed by 

(27)

implying that the conduction term is negligible.
This does not necessarily mean that the conductive
transport is absent in this layer. In fact, in this layer
the conductive flux of ions is in the same order of
magnitude as the diffusive flux, but its magnitude
is almost constant across the middle layer so that
its divergence  vanishes. It was found that
thickness of the middle layer is of  as
indicated in Fig. 8. The outermost layer called
‘outer layer’ is characterized by a very slow diffu-
sion process. Here again the governing equation is
the same as (27), but the effective time scale is
much larger than that of the middle layer .

The asymptotic solutions of the ion transport
equation (12) in each of these layers have been
obtained by e.g. Suh & Kang [4]. In deriving the
solutions they employed an adsorption model, in
which ions are assumed to be adsorbed at the edge
of the Stern layer, and a Stern-layer model, in
which it is assumed that there exist no ions in the
Stern layer. From the second assumption, we can
set the RHS of Eq. (17) zero, and immediately we

φ 4ςTtanh 1– tanh ς 4ςT⁄( )exp n– λD⁄( )[ ]=

ς

λD
εε0kBT

2z2e2c0

-----------------=

ς ςT«

φ ςexp n– λD⁄( )=

σD ρedn
0

∞

∫=

σD 4– zec0λD h ς 2ςT⁄( )sin=

CD
dσD

dς---------
εε0

λD
-------cosh ς 2ςT⁄( )

228.5z c0cosh 19.46zς( )

= =

=

ς

∂c  ±

∂t
--------- D∇2c  ±=

∇ Ji
C⋅

O D ω⁄( )

O 1 ω⁄( )

Fig. 8. Four-layer structure near an electrode wall under
AC (from Suh & Kang [4]).
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derive the fact that the potential distribution within
the Stern layer is linear. So, we can write

(28)

where φ0 denotes the value of φ at n=0 (interface
between the Stern and inner layers), V00 the ampli-
tude of the external potential and λs the Stern-layer
thickness. LHS of (28) denotes the slope of φ at the
point very close to the interface n=0 to the Stern-
layer side; this slope is constant across the Stern
layer. Next, we integrate the Poisson equation (17)
over a very thin interface from n=0− to n=0+, where
the cations and anions are supposed to be adsorbed
as much as Γ+ and Γ− respectively per unit area fol-
lowing our adsorption model. The result is

(29)

where εS denotes the dielectric constant of the
Stern layer and 

is the surface charge density caused by the ion
adsorption at the interface. Then, we obtain the fol-
lowing equation for the potential at the interface
between the Stern and inner layers. 

, (30)

where λSeff represents the effective thickness of the
Stern layer; λSeff=λSε/εS. 

On the other hand we must specify the relation
between the adsorptions Γ± and the concentrations
c± at n=0. For this we can use an isotherm such as
the Langmuir type

(31)

where Γmax is the limit value of Γ± available at
; this magnitude should be proportional to

a−2. Further, the parameter α controls the rate of
increase of Γ± upon change of  in the limit

. Fig. 9 is a typical example of the numeri-
cal results for the effect of the adsorption on the
potential distribution within the Stern and inner
layers. We see that although the slope of the poten-

tial φ in the Stern layer is almost independent of
the adsorption parameters, the potential drop across
the inner layer (i.e. zeta potential) decreases signif-
icantly with the adsorption effect. 

We finally need a dynamical equation that relates
what happening in the electrical layers and the
potential field in the bulk. Fortunately the middle
layer does not give any significant effect in such
relationship as far as the applied potential remains
small, that is, in the weakly non-linear regime;
when the applied voltage is high enough, it hap-
pens that the middle layer is devoid of ions, at least
temporally, so that the asymptotic solutions pro-
vided by Suh and Kang [4] should be modified.
Here we just present the basic dynamical equa-
tions needed to supply the boundary conditions for
solving the Laplace equation 

(32)

for the bulk. The boundary conditions can be pre-
sented in terms of the dimensionless areal charge
density q determined by the dynamical equation

(33)

where the subscript ‘w’ indicates evaluation at the
wall n=0 from the solution of Eq. (32), 

∂φ
∂n
------⎝ ⎠
⎛ ⎞

0−

φ0 V00cosωt–
λs

-------------------------------=

εε0
∂φ
∂n
------⎝ ⎠
⎛ ⎞

0+

εSε0
∂φ
∂n
------⎝ ⎠
⎛ ⎞

0−
– σ– a=

σa ze Γ+ Γ−–( )=

φ0 V00cosωt λSeff
∂φ
∂n
------⎝ ⎠
⎛ ⎞

0

λSeffσa εε0( )⁄+ +=

Γ  ± Γmaxαc0
 ±

1 α c0
+ c0

−+( )+
-------------------------------=

c0
 ± ∞→

c0
 ±

c0
 ± 0→

∇2φ 0=

dq
dt
------

2ωλdif

1 β+( )ςT
-------------------- ∂φ

∂n
------⎝ ⎠
⎛ ⎞

w

=

λdif D ω⁄=

Fig. 9. A typical numerical result for the distribution of
potential in the Stern and inner layers with var-
ious non-dimensional-parameter settings [4].
Here, all the variables are dimensionless; e.g. Γ
and α correspond to Γ'max and α' respectively in
the text.
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represents the middle-layer thickness and β is a
dimensionless parameter defined as

(34)

Here the dimensionless parameter γ=(λdif/λD)2/2 is
usually large. Further, Γ'max and α' are dimension-
less parameters related to Γmax and α as follows.

, (35)

Eq. (33) has been derived by subtracting the
equation for c− from that for c+ (those are shown in
Eq. (12)) and integrating the result over the inner
layer. The effect of the adsorption has been consid-
ered through the factor β; note that β=0 when no
adsorption occurs. Then the potential at the wall
surface is calculated from

(36)

where σa is directly calculated with

(37)

The zeta potential becomes

(38)

The numerical procedure can be described as follows.
(i) Solve (32) for φ over the whole fluid region

with the boundary value φw.
(ii) Get the gradient  and update q by

using (33).
(iii) Then calculate φw by using (36).
(iv) Increase the time level and repeat (i)-(iii).
For more detailed description on derivation of the

above formulas, refer to the paper by Suh & Kang [4].
Fig. 10 demonstrates the numerical procedure.

6. Slip Velocity and Driven Flow - Elec-
troosmosis

Since the electrical layer is very thin in microflu-

idic flows, we can neglect the tangential variation
of the variables in the momentum equations when
compared with the normal variation. We can also
neglect the transient and convective terms in most
applications. Then we can write Eq. (15) in the
component forms as follows.

  (39a)

 (39b)

where u represents the velocity component along
the s-direction. We can integrate Eq. (39b) immedi-
ately to obtain

(40)

where the function P(s) is independent of the poten-
tial φ; this pressure should act as a driving term for
the case of pressure driven flows. Since we are inter-
ested in the electrically induced flow we can set
P(s)=0 without loss of generality. We also note the
pressure built in the inner layer should be always
higher than that of the other layers because  in
the inner layer is much larger than that of the other
layers; the excess pressure corresponds to the
‘osmotic pressure’. Differentiating (39) w.r.t. s and
substituting the result into (39a), we get

(41)

β 8Γ'maxα' γ 8 16α' γq2+ +( )

16 γq2+ 4 8α' α'γq2+ +( )
--------------------------------------------------------------=

Γ'max
2Γmax

c0λdif
-----------------= α' c0α=

φw V00cosωt
γςTλSeff

2λdiff

-----------------⎝ ⎠
⎛ ⎞q ςTln 16 γ⁄ q2+ q–

16 γ⁄ q2+ q+
--------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

–

λSeff

εε0
---------⎝ ⎠
⎛ ⎞σa

+

+

=

σa
Γmaxzeαc0γq 16 γ⁄ q2+

4 8αc0 αc0γq2+ +
-------------------------------------------------------=

φ0 φw– ςTln 16 γ⁄ q2+ q–

16 γ⁄ q2+ q+
--------------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

∂φ ∂n⁄( )w

∂2u

∂n2
-------- 1

η---
∂p
∂s
------

εε0

η-------
∂2φ
∂n2
--------∂φ

∂s
------–=

0 1
η---

∂p
∂n
------

εε0

η-------
∂2φ
∂n2
--------∂φ

∂n
------–=

p s n,( ) εε0

2
------- ∂φ

∂n
------⎝ ⎠
⎛ ⎞

2

P s( )+=

∂φ ∂n⁄

∂2u

∂n2
--------

εε0

η-------
∂2φ
∂n2
--------∂φ

∂s
------– ∂φ

∂n
------∂2φ

∂s2
--------+⎝ ⎠

⎛ ⎞=

Fig. 10. Schematic illustrating the numerical procedure
for obtaining the potential distribution in the
bulk of the electrolyte contacting the electrode
under AC, where the ETL (electric triple layer)
effect has been modeled by the asymptotic solu-
tions.
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Now we apply the asymptotic solutions of φ to
Eq. (41) and after some algebra we arrive at the
following formula for the instantaneous slip veloc-
ity at the surface. 

(42)

where the zeta potential (φ0−φw) is calculated from
(38) and φw needed for  from (36). The
slip velocity to be used as the boundary condition
in the flow-field calculation is then given by the
time average of Eq. (42);

(43)

where  denotes the time average over one cycle
of AC. We see that Eq. (43) corresponds to the
Smoluchowski’s slip-velocity formula for the case
of AC [3].

The viscous flow of the bulk fluid driven by the
slip velocity on the electrode walls, which is called
‘electro-osmotic flow’, can be calculated by using a
standard CFD technique if the slip velocity has
been set up. As a typical problem, a rectangular
cavity having a pair of coplanar electrodes on the
bottom boundary has been investigated as shown in
Fig. 11. This has been studied experimentally by
Green et al. [5] and they provided the experimen-
tally measured data for the slip velocity on the
electrode surfaces as shown by symbols in Fig. 12.
The electrodes were 250 [µm] long and separated
by 25 [µm]. Alternating current with V00=0.25 [V]
was applied. The concentration of the KCl electro-
lyte was set at 0.141 [mM] equivalent to c0=0.85×

1023 [/m3], the diffusivity being D=1.92×10−9 [m2/
s]. The Debye screening length is calculated to be
λD=25.4 [nm] and the thermal potential 
[mV]. Fig. 12 compares the theoretical/numerical
results and the experimentally measured ones. It
shows that without the adsorption effect the experi-uw

εε0

η------- φ0 φw–( ) ∂φ
∂s
------⎝ ⎠
⎛ ⎞

w

=

∂φ ∂s⁄( )w

uslip
εε0

η------- φ0 φw–( ) ∂φ ∂s⁄( )w〈 〉=

〈 〉

ςT 25=

Fig. 11. Geometry of the ion-transport and subsequent
momentum-transport problem around a pair of
coplanar electrodes under AC.

Fig. 12. Parameter tuning for matching the slip-velocity
data obtained from the theory considering the
adsorption effect (solid lines) and that of the
experiment (symbols) obtained by Green et al.
[5] for the case of electrolyte “A”. Here, the
parameter Γ is dimensionless; that is, this cor-
responds to Γ'max in the text. Dash-dot and
dashed lines are the theoretical/numerical results
without adsorption.

Fig. 13. Streamlines of the electro-osmotic flow driven
by the slip velocity on the electrodes under AC
measured from the experiment (LHS) by Green
et al. [5] and that obtained from the theoretical/
numerical method (RHS) for the case of elec-
trolyte “A” with the external potential amplitude
at 0.25 [V] and the frequency at 100 [Hz].
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mental results cannot be matched accurately. On
the other hand, for a suitable parameter setting the
measured data can be well fitted by the asymptotic
solutions. Fig. 13 shows an example of flow field
calculated from the theoretical/numerical work in
comparison with the experimental observation of
Green et al. [5]. It shows good agreement although
the observed flow pattern near the electrodes’ outer
edges is not clear. Further analysis should be
needed for instance as to enlarging the applicabil-
ity of the present model.

7. Visulization of Ion Motions

7.1 Velocity Field
Most of the studies on the ion transport have

been done in terms of its primary influence on the
fluid flows, that is the electroosmotic flows. So the
motion of ions has naturally been put aside from
our interests. On the other hand, in order to shorten
the gap between the theoretical/numerical solu-
tions and the experimental results, we may have to
consider the kinematics of ions so that it can lead
to improved models. 

We have derived the Nernst-Planck equation like
(11) or (12). On the other hand the conservation of
ions implies the following equation.

(44)

Comparing this with (12), where the advection
term is to be neglected, we can derive the velocity
vector of the ion motion as follows.

(45)

This indicates that the velocity field can be written
as  where ϕi denotes the velocity potential
to be given by 

(46)

For instance, in the bulk we have ,
so the first term within [ ] on RHS of (46) becomes
very small and the velocity potential is propor-
tional to the electric potential. Furthermore the
divergence of the velocity vector, , also van-

ishes in the bulk because the Laplace equation (32)
must apply there. 
For the 2-D case we can decompose the velocity
vector as ui=uies+vien, where es and en are unit vec-
tors along the tangential and normal directions,
respectively, with respect to the electrode surface.
Then (44) becomes

(47)

Usually the second term is very small compared
with the third one. Then we are left with

(48)

This equation can be used in determining the
normal component of the velocity within the elec-
tric layer as follows.

(49)

where 

(50)

is the normal velocity calculated from the solution
of (32) evaluated at the electrode surface. When the
adsorption effect were not existent, vi should tends
to zero when the electrode surface is approached.
The order of magnitude of vi∞ for the case of fac-
ing electrodes with the standard set-up of Suh and
Kang [4] was found to be vi∞=190 [µm/s]. The dis-
tance traveled by the ion at 100 [Hz] is then com-
puted to be 0.32 [µm]. Further, the thickness of the
inner and middle layer is approximately 0.24 [µm]
and 4.8 [µm], respectively. This indicates that the
travel distance of the ions is in the same order of
magnitude as that of the electric-layer thickness.
However, the ion’s travel distance becomes decreased
as the frequency is increased. For instance at
10,000 [Hz] it reaches down to 0.0032 [µm], which
is very small compared even with the inner-layer
thickness, that is independent of the AC frequency. 

On the other hand, determining ui, the tangential
component of the velocity, has not been clearly
defined. Since the gradient of the ion concentra-
tion along the tangential direction is usually much

∂ci

∂t
------- ∇+ uici( )⋅ 0=

ui Di ∇lnci
zie
kBT
--------⎝ ⎠
⎛ ⎞∇φ+–=
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ϕi Di– lnci
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⎛ ⎞φ+=
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∇ ui⋅
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∂t
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∂n
-----------+ + 0=
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1
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∂ci
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-------dn vi∞+
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n

∫=

vi∞ sign zi( )D
ςT
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∂n
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⎛ ⎞

wall
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smaller than that along the normal direction, the
contribution of the ion concentration to its motion
may be neglected compared to the conduction effect.
So, we are allowed to assume the followings. 

(51)

We have conducted interactive numerical compu-
tations of the Laplace equation (32) and the
dynamical equation (33) for the model shown in
Fig. 11 to obtain the velocity field during one
period of AC. After the potential becomes periodic
(usually after 10 periods), we assume that the
velocity data can be expanded in Fourier series as
follows. 

 (52a)

 (52b)

where the velocity data are calculated by using (51)
for u and (50) for v. We obtain the Fourier coeffi-
cients auk, buk, avk and bvk at each grid point in the
numerical domain. These coefficients can be con-
sidered as functions of spatial variables. It turns out
that only with 20 harmonics, (52a) and (52b) can
reproduce the numerical data very accurately. Fig.
14(a) shows the typical evolution of the cation’s
velocity vector at the point 5 [µm] distant from the
leading edge of one of the electrode pair under AC.
The data in Fig. 14 are obtained from the asymp-
totic solutions provided by Suh and Kang [4]. The
bulk pattern shows almost completely symmetric
pattern whereas the middle-layer pattern exhibits
significantly asymmetric one. This is of course
caused by the asymmetric distribution of concen-
tration in each half period. The velocity data for the
inner layer (though not shown in this paper) on the
other hand give not only asymmetric pattern but
also significantly large magnitude of v, which is of
course not physically relevant. Determining the
normal component of the velocity vector by using
(49) is in fact expected to produce large errors,
because the asymptotic solutions are obtained from
the quasi-steady-state assumption for the inner

layer. Thus we may have to develop a new model
when more accurate picture for the ion motions is
required in the electric layer. In this lecture there-
fore we focus our attention on the bulk region only.
On the other hand Fig. 14(b) illustrates the signifi-
cant influence of the external potential on the
velocity magnitude.

ui sign zi( )D
ςT
---- ∂φ

∂s
------⎝ ⎠
⎛ ⎞–=

u aukcoskt buksinkt+( )
k 1=

∞

∑=

v avkcoskt bvksinkt+( )
k 1=

∞

∑=

Fig. 14. Typical evolutions of the cation velocity vector
for the case of electrolyte “A” with the fre-
quency at 200 [Hz]. Plot (a) shows difference of
the velocity vector in the bulk and middle layers
(here the measurement position is at 5 [µm]
away from the leading edge of the electrode).
Plot (b) shows the dependence of the velocity
magnitude on the external potential.



14 Yonk Kweon Suh

7.2. Motional Trajectory
We have seen that the velocity vectors are com-

pletely periodic. More precisely, after one period of
AC the velocity vector returns back to the initial
value as shown in Fig. 14. However this does not
necessarily mean that the same argument holds for
the trajectory of ion motion. In another words, after
one period, the ion can be shifted from the initial
position. So, after many periods the ion can travel a
long distance and arrive at the place far away from
the initial position. This phenomenon is well
known in the fluid mechanics and called Stokes’
drift motion. The ion’s trajectory can be obtained
from the time integration of the following equations.

(53)

where now all the variables are dimensionless and
 is a small parameter. The dimensionless

velocity vector components are related to the
dimensionless potential as follows.

(54)

Fig. 15 shows typical plots of the cation’s trajec-
tory with the external potential amplitude at 0.5 [V]
and the other parameters being fixed the same as in
Fig. 14. First, we note that the shape of the trajec-
tory during one period is not the same as that of the
velocity vector; compare Fig. 15(a) with a larger
loop in Fig. 14(b). As will be shown shortly this
means that the higher harmonic terms have impor-
tant contribution to the ion motions. Next, we see
that the drift motion is downward in Fig. 15(a)
while it is upward in Fig. 15(b); the former repre-
sents the behavior of cation motion near the elec-
trode surface and the latter in the region between
the electrode pair.

The Stokes’ drift velocity can be obtained by
applying a perturbation technique to the equations
of motion (53). For this we assume 

We then substitute these into (53), where the veloc-
ity vector is expanded like

(55a)

(55b)

collect the terms in the same power of  and
obtain a series of equations. The leading-order
equations, in , take the following form. 

dx
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----- ε̃u=    dy
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----- ε̃v=,
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⎛ ⎞

0

x x0–( ) ε̃ ∂u
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⎛ ⎞

0

y y0–( )...+ +=

v v x0 y0 t, ,( ) ε̃ ∂v
∂x
-----⎝ ⎠
⎛ ⎞

0

x x0–( ) ε̃ ∂v
∂y
-----⎝ ⎠
⎛ ⎞

0

y y0–( )...+ +=

ε̃

O ε̃( )

dx1
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------- auk0coskt buk0sinkt+( )

k 1=

∞

∑=

Fig. 15. Typical cation trajectories for the case of elec-
trolyte “A” with the external potential amplitude
at 0.5 [V] and the frequency at 200 [Hz]. Par-
ticle starts at (a) (1.4, 0.15) and (b) (0.85, 0.05).
All the other parameters are the same as in Fig.
14.
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where the Fourier coefficients are to be evaluated
at the reference point (x0, y0). Integration of these
w.r.t. time gives

 (56a)

 (56b)

This set of coordinates represents the primary tra-
jectory of the ion motion. Let us compare these
with the velocity components (52a) and (52b). For
instance, if the fundamental harmonic (i.e. the term
with k=1) is dominant and all the higher harmon-
ics can be neglected, the displacement vector
(x1, y1) should give the trajectory in the same shape
as that of the velocity vector (u, v) evaluated at the
reference point; the phase of the displacement is of
course behind that of the velocity as much as a
quarter period. On the other hand if the higher har-
monics become more important, then those shapes
may be quite different from each other, as shown in
Fig. 14(b) and Fig. 15(a). Next we substitute (56a)
and (56b) to the system of higher-order equations
in . The solutions can be decomposed into
the steady and unsteady parts. It can be shown that
the steady parts are 

(57a)

(57b)

which represent the Stokes’ drift velocity compo-
nents. Here again we can confirm the divergence-
free property of the drift-velocity vector, i.e.

. Further we can derive the stream func-
tion as follows.

We can address a few comments regarding the

Stokes’ drift velocity. First, we notice that when the
velocity field is spatially uniform the Stokes’ drift
velocity vanishes because the coefficient functions
are constant. This can occur even when the trajec-
tory is elliptic, i.e. not linear. Next, when avkbuk−
aukbvk=0 for every k, no Stokes’ drift motion can be
expected either. This corresponds to the case when
the two velocity components u and v have the same

dy1
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1
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Fig. 16. Stokes’ drift velocity field computed by using
(57a) and (57b) the results being shown as vec-
tor plots in (a). Also shown in this plot are some
of the streamlines constructed from the field. In
(a) a typical trajectory of a cation having started
at the point (0.5, 0.5) is also shown. Plot (b)
shows a magnified view of the trajectory near
the electrode surface. Parametric values used in
this visualization are shown in the figure.
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phase. In the (u,v) space this describes, in general,
a curved line. For the anion’s case the primary
velocity is reversed as can be seen from Eqs. (50)
and (51). Therefore the velocity has phase differ-
ence as much as half period, but both ions have the
same rotational direction in the (u,v) space; this
means that when the cation moves up, the anion
moves down, and when the cation moves to the left,
the anion moves to the right, etc. Then we expect
that the Stokes’ drift motion should have the same
direction for both ions. This can be understood from
(57a) and (57b); if the coefficients change their signs
altogether, u2D and v2D keep their signs.

Fig. 16(a) shows the Stokes’ drift velocity vec-
tor plot obtained by using (57a) and (57b). It
reveals that velocity field is strongest near the elec-
trode edge, situated at x=1. It also shows that the
cations and anions should accumulate on the elec-
trode surface whereas they become scarce in the
region between the pair of electrodes.

7.3. Further Discussions
The Stokes’ drift motion is not temporary but per-

sistent as far as the asymptotic solutions provided by
Suh and Kang [4] is correct. On the other hand,
abundance and scarceness of such ions in differenti-
ated spaces may give rise to concentration gradient.
Then we can conjecture that diffusion caused by the
non-zero concentration gradient may block the
Stokes’ drift motion. If this scenario is true, then we

expect again the non-zero build-up of charge in the
corresponding space. This charge in turn will affect
the ion motion again. We are curious if such sce-
nario may be relevant, if the subsequent effect can
be formulated effectively and if the effect may be
significant in determining the electroosmotic flows.
This issue is left as our future study.
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