DOI QR코드

DOI QR Code

펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성

The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method

  • 서석주 (한양대학교 건설환경공학과) ;
  • 나소정 (한양대학교 건설환경공학과) ;
  • 김정환 (한양대학교 건설환경공학과) ;
  • 박주양 (한양대학교 건설환경공학과)
  • 투고 : 2013.10.07
  • 심사 : 2014.02.18
  • 발행 : 2014.06.01

초록

중금속과 총 석유 탄화수소(TPH)로 동시 오염된 복합오염 토양을 정화하기 위해 펜톤 산화와 토양 세정법에 활용되고 있는 $H_2O_2$와 sodium dodecyl surfate (SDS)를 활용하여 강화된 동전기를 연구하였다. 또한, 토양 고유의 특성 차이 및 전극액 농도에 따른 정화 효율의 영향을 확인하기 위해 토양과 농도를 달리하여 실험하였다. 인공적으로 오염시킨 토양에서 10% $H_2O_2$와 20mM SDS를 활용한 실험에서 중금속 정화 효율이 가장 높게 나타났으며, 반면에 같은 농도의 용산 토양 실험에서 토양 고유의 높은 산 완충능력으로 중금속 정화 효율이 떨어졌다. 20% $H_2O_2$와 20mM SDS으로 전극액 농도를 높인 실험을 통해 높은 전류는 토양의 pH에 영향을 주었으며, 이로 인해 중금속 정화에 영향을 미쳤다. TPH의 정화 효율의 경우 용산토양의 높은 산 완충능력과 유기물 함량으로 인해 인공적으로 오염시킨 토양에 비해 산화 효율이 저하되었다. 게다가 40mM의 sodium dodecyl surfate (SDS)의 농도가 주입될 경우, SDS의 scavenger 영향 때문에 TPH 정화에 악영향을 주었다. 토양 고유의 구성성분 및 전극액 농도가 동전기-펜톤 공정의 전기화학적 현상 및 전기삼투유량, 오염물질 정화에 매우 큰 영향을 주는 인자로 판명되었다.

This research reports the enhanced Electrokinetic (EK) with $H_2O_2$ and sodium dodecyl surfate (SDS), which are commonly used in Fenton oxidation and soil flushing method, in order to remediate soil contaminated with heavy metals and Total Petroleum Hydrocarbons (TPH) simultaneously. In addition, influences of property of soil and concentration of chemical solution were investigated through experiments of different types of soils and varying concentration of chemical reagents. The results indicated, in the experiments using artificially contaminated soil, the highest removal efficiency of heavy metals using 10% $H_2O_2$ and 20mM SDS as electrolytes. However, in the experiments using Yong-San soils (study area), remediation efficiency of heavy metals was decreased because high acid buffering capacity. Through experiment of 20% $H_2O_2$ and 40mM SDS, increased electric current influences the remediation of heavy metals due to decrease in the soil pH. In the experiments of Yong-San soils, the remediation efficiency of TPH was decreased compared with artificially spiked soils because high acid buffering capacity and organic carbon contents. Furthermore, the scavenger effect of SDS influenced TPH oxidation efficiency under the conditions of injected 40mM SDS in the soils. Therefore, the property of soil and concentration of chemical reagents cause the electroosmotic flow, soil pH, remediation efficiency of heavy metals and TPH.

키워드

참고문헌

  1. Acar, Y. B. and Alshawabkeh, A. N. (1993). "Principles of electrokinetic remediation." Environ. Sci. Technol., Vol. 27, No. 13, pp. 2638-2647. https://doi.org/10.1021/es00049a002
  2. Al-Hamdan, A. Z. and Reddy, K. R. (2008). "Transient behavior of heavy metals in soils during electrokinetic remediation." Chemosphere, Vol. 71, No. 5, pp. 860-871. https://doi.org/10.1016/j.chemosphere.2007.11.028
  3. Gee, C., Ramsey, M. H. and Thornton, I. (2001). "Buffering from secondary minerals as a migration limiting factor in lead polluted soils at historical smelting sites." Appl. Geochem., Vol. 16, No. 9-10, pp. 1193-1199. https://doi.org/10.1016/S0883-2927(01)00025-7
  4. Giannis, A., Gidarakos, E. and Skouta, A. (2007). "Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil." Desalination, Vol. 211, No. 1-3, pp. 249-260. https://doi.org/10.1016/j.desal.2006.02.097
  5. Hamed, J., Acar, Y. B. and Gale, R. J. (1991). "Pb(II) removal from kaolinite by electrokinetics." J. Geotech. Engrg., Vol. 117, No. 2, pp. 240-271.
  6. Kaya, A. and Yukselen, Y. (2005). "Zeta potential of soils with surfactants and its relevance to electrokinetic remediation." J. Hazard. Mater., Vol. 120, No. 1-3, pp. 119-126. https://doi.org/10.1016/j.jhazmat.2004.12.023
  7. Kim, J. and Lee, K. (1999). "Effects of electric field directions on surfactant enhanced electrokinetic remediation of diesel-contaminated sand column." J. Environ. Sci. Health, Vol. 34, No. 4, pp. 863-877. https://doi.org/10.1080/10934529909376870
  8. Kim, J. H., Han, S. J., Kim, S. S. and Yang, J. W. (2006). "Effect of soil chemical properties on the remediation of phenanthrenecontaminated soil by electrokinetic-Fenton process." Chemosphere, Vol. 63, No. 10, pp. 1667-1676. https://doi.org/10.1016/j.chemosphere.2005.10.008
  9. Kim, J. J., Kim, S. S. and Yang, J. W. (2007). "Role of stabilizers for treatment of clayey soil contaminated with phenanthrene through electrokinetic-Fenton process-Some experimental evidences." Electrochimica Acta, Vol. 53, pp. 1663-1670. https://doi.org/10.1016/j.electacta.2007.06.082
  10. Lockhart, N. C. (1982). "Electro-osmotic dewatering of clay-III. Influence of clay type, exchangeable cations and electrode materials." Colloid and Surface, Vol. 6, No. 3, pp. 253-269.
  11. Ministry of Environment (2009). "Soil environment conservation act." (in Korean).
  12. Sah, J. G. and Chen, J. Y. (1998). "Study of the electrokinetic process on Cd and Pb spiked soils." J. Hazard. Mater., Vol. 58, No. 1-3, pp. 301-315. https://doi.org/10.1016/S0304-3894(97)00140-4
  13. Schumb, W. C., Satterfield, C. N. and Wentworth, R. L. (1955). "Hydrogen peroxide." J. Franklin. I., Vol. 261, No. 3, p. 380.
  14. Shang, J. Q., Lo, K. Y. and Quigley, R. M. (1994). "Quantitative determination of potential distribution in stern-gouy double-layer model." Can. Geotech. J., Vol. 31, No. 5, pp. 624-636. https://doi.org/10.1139/t94-075
  15. Tessier, A., Campbell, P. G. C. and Bisson, M. (1979). "Sequential extraction procedure for the speciation of particulate trace metals." Anal. Chem., Vol. 51, No. 7, pp. 844-851. https://doi.org/10.1021/ac50043a017
  16. Tsai, T. T., Sah, J. and Kao, C. M. (2010). "Application of iron electrode corrosion enhanced electrokinetic-fenton oxidation to remediate diesel contaminated soil: A Laboratory Feasibility Study." J. Hydrol., Vol. 380, No. 1-2, pp. 4-13. https://doi.org/10.1016/j.jhydrol.2009.09.010
  17. Watts, R. J. and Dilly, S. E. (1996). "Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils." J. Hazard. Mater., Vol. 51, No. 1-3, pp. 209-224. https://doi.org/10.1016/S0304-3894(96)01827-4
  18. Yong, R. N. and Ohtsubo, M. (1987). "Interparticle action and rheology of kaolinite-amorphous iron hydroxide(ferrihydrite) complexes." Appl. Clay Science, Vol. 2, No. 1, pp. 63-81. https://doi.org/10.1016/0169-1317(87)90014-7