• Title/Summary/Keyword: electrodeposited

Search Result 340, Processing Time 0.029 seconds

A Basic Study on Separation of U and Nd From LiCl-KCl-UCl3-NdCl3 System (LiCl-KCl-UCl3-NdCl3 system에서 U 및 Nd 분리에 관한 기초연구)

  • Kim, Tack-Jin;Ahn, Do-Hee;Eun, Hee-Chul;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In case of high contents of rare earths in the LiCl-KCl salt, it is not easy to recover U and TRU metals as a usable resource form from LiCl-KCl eutectic salts generated from the pyroprocessing of spent nuclear fuel. In this study, a conversion of $UCl_3$ into an oxide form using $K_2CO_3$ and an electrodeposition of $NdCl_3$ into a metal form in $LiCl-KCl-UCl_3-NdCl_3$ system were conducted to resolve the problem. Before conducting the conversion, experimental conditions for the conversion were determined by performing a thermodynamic equilibrium calculation. In this study, almost all of $UCl_3$ disappeared in the LiCl-KCl salt when the injection of $K_2CO_3$ reached theoretical equivalent for the conversion, and then $NdCl_3$ was effectively electrodeposited as a metal form using liquid zinc cathode. After that, the LiCl-KCl salt became transparent, and uranium oxides were precipitated to the bottom of the LiCl-KCl salt. These results will be utilized in designing a process to separate U and rare earths in LiCl-KCl salt.

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan;Jang, Sung-Chan;Haldorai, Yuvaraj;Rethinasabapathy, Muruganantham;Oh, Seo Yeong;Rengaraj, Arunkumar;Han, Young-Kyu;Cho, Wan-Seob;Roh, Changhyun;Huh, Yun Suk
    • Carbon letters
    • /
    • v.23
    • /
    • pp.38-47
    • /
    • 2017
  • In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.

Synthesis of Mesoporous Pt-Au Alloy Electrode by Electrodeposition Method for Direct Methanol Fuel Cell (전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 메조포러스 백금-금 합금전극제조)

  • Park, Eun-Kyung;Ahn, Jae-Hoon;Kim, Young-Soo;Kim, Kyung-Hwa;Baeck, Sung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.727-731
    • /
    • 2008
  • Mesoporous Pt-Au alloy films were successfully fabricated on ITO-coated glass by electrodeposition method using tri-blockcopolymer (P123) as a templating agent. The electrolyte consisted of 10 mM hydrogen hexachloroplatinate ($H_2PtCl_6$), 10 mM hydrogen tetrachloroaurate ($HAuCl_4$), and proper amount of P123. For comparison, control samples were electrodeposited without $HAuCl_4$ and P123. Film composition was determined by EDS(Energy Dispersive X-ray Spectroscopy), and the mesoporous structure was confirmed by TEM(Transmission Electron Microscopy). SEM(Scanning Electron Microscopy) was utilized to examine surface morphology, and it was observed that the addition of P123 affected the particle growth, resulting in the significant change of surface morphology. Methanol oxidation and CO oxidation were carried out to investigate electrocatalytic activities of synthesized samples. It was observed that the catalytic activity was strongly dependent on the film compositions. Compared with nonporous electrode prepared without P123 templating, mesoporous films prepared with P123 templating showed much higher catalytic activities and stability for both methanol oxidation and CO oxidation. These enhanced electrocatalytic activities were due to the high surface area and facilitated charge transfer of mesoporous films.

Development of Particle-level Computer Assisted Instruction Materials for the ‘Solution’ Chapter in High School Chemistry Textbook and Analysis of the Educational Effects (고등학교 화학 교과서의 ‘용액’ 단원에 대한 입자 수준의 컴퓨터 보조 수업자료 개발 및 적용 효과 분석)

  • Baek, Seong-Hye;Kim, Jong-Hyeon;Kim, Jeong-Won;Park, Chan-Geun
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.163-177
    • /
    • 2006
  • Alpha Nickel hydroxide samples have been synthesized by electrodeposition on platinum and nickel substrates at current densities of 1, 5, 6, 7 and 10 mAcm?2 at a controlled temperature of 30.00 oC from Ni(NO3)2 bath. Platinum substrate shows a tendency to incorporate less nitrate ions with increase in current density thus producing less hydroxy-deficient nickel hydroxide layers. On the whole the interlayer distance (d003) is found to be inversely proportional to the amount of nitrate ions incorporated in-between the lattice. For the first time we have observed a decrease in lattice spacing with increase in concentration of intercalant (anions) and the reason for lattice contraction is attributed to the columbic attractive forces exerted by the oppositely charged nitrate ion and positively charged slabs. The Infrared spectra of the samples with expanded interlayers show two types of OH vibrations corresponding to hydrogen bonded and non-hydrogen bonded OH groups whereas the contracted interlayers show only hydrogen-boded OH groups. Although the faradaic efficiency is found to increase with increase in applied current there is a local minimum at 6.0 mAcm?2 current density on both platinum and nickel substrates. In this manuscript, GC-MS data is provided which clearly demonstrates the electrodeposited nickel hydroxide sample to consist of huge amount of carbonate ions although the electrolyte solution in nickel nitrate.

An Investigation of Preferred Orientation and Microhardness of Nickel-Tin and Tin-Zinc Alloy Electrodeposits on Mild Steel (연강에서의 닉켈-주석과 주석-아연합금 전착층의 우성배향와 미소경도에 관한 연구)

  • Ahn, Deog-Su;Pyun, Su-Il
    • Journal of Surface Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.146-154
    • /
    • 1980
  • The effects of various electrodeposition conditions (deposition temperature and cathode current density) on preferred orientation and microhardness of electrodeposited Ni-Sn and Sn-Zn alloys were studied. At deposition temperatures from 25$^{\circ}$ to 95$^{\circ}C$ and constant cathode current density of 270 and 530 A/$m^2$ Ni-Sn and Sn-Zn were codeposited in chloride-fluoride acid and stannate-cyanide alkaline electrolyte bath respectively. Ni-Sn alloy deposited at temperatures from 25$^{\circ}$ to 35$^{\circ}C$ was composed of single phase of $Ni_3Sn_4$ with 73 wt.% Sn and the one deposited at temperatures from 45$^{\circ}$ to 95$^{\circ}C$ was made of multiphase mixture of NiSn, $Ni_3Sn_2$ and $Ni_3Sn_4$ with nearly equiatomic composition (65.5 wt.% Sn). The random orientation of thermody-namically metastable NiSn phase (hexagonal structure) predominated at deposition temperature range 25$^{\circ}$-45$^{\circ}C$, and the strong (110) preferred orientation was found at 65$^{\circ}$-85$^{\circ}C$ and then disappeared again at 95$^{\circ}C$. The microhardness of Ni-Sn deposits increased with deposition temperature up to 85$^{\circ}C$, and then decreased at constant cathode current density. The preferred orientation and the maximum microhardness were discussed in terms of lattice contractile stress which result from desorption of hydrogen atom absorbed in deposit lattice. The Sn content of Sn-Zn alloy deposits increased with deposition temperature up to 75$^{\circ}C$, and then decreased at constant cathode current density of 530 A/$m^2$. It also decreased with cathode current density up to 530 A/$m^2$, and then increased at constant deposition temperature of 25$^{\circ}C$. Sn-Zn alloy deposits were composed of two-phase mixture of ${beta}$-Sn and Zn. The preferred orientations of ${beta}$-Sn (tetragonal structure) changed with deposition temperature. The microhardness of Sn-Zn deposits decreased with deposition temperature. It also increased with cathode density up to 530 A/$m^2$, and then decreased at constant deposition temperature of 25$^{\circ}C$. The microhardness of Sn-Zn deposits was observed to be determinded more by the Sn content than by the preferred orientation.

  • PDF

Corrosion Behavior of Cathodic Electrodeposited Epoxy Based Coating for Automotive Primer (자동차용 에폭시계 양이온형 전착도료의 내식성에 대한 연구)

  • Lee, Soung-Youb;Lee, Jung-Mu;Kwag, Sam-Tag;Moon, Myung-Jun;Suh, Cha-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.250-256
    • /
    • 2005
  • Coating appearance is the most important problem in automotive industry. To increase the coating appearance quality, the corrosion resistance and the coating adhesion on metal substrates must be basically solved. The phosphating film made by the pretreatment of metal substrate is important factor to increase the coating adhesion. During the cathodic electrodeposition, the pH at the cathode surface increases up to about 12. In such a highly alkaline condition, the dissolution of metal substrate and phosphate film occurs. These phenomena result in the decrease of the bonding strength between the phosphating film and the substrate. Generally, the structure of zinc phosphating film is hopeite or phosphophyllite. It has been known that the phosphophyllite film contains better corrosion resistance and paint adhesion for hot water immersion test because of the decrease of dissolving amount of both metal substrate and phosphating film during the cathodic electrodeposition. It is found that the addition of Ni and Mn composition increase P-ratio and then can improve the paint adhesion on metal surface and the corrosion resistance.

A Basic Study on Non-aqueous Electrolysis of Neodymium for Room-temperature Metallurgy (상온제련을 위한 네오디뮴의 비수계 전해 기초연구)

  • Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.29-35
    • /
    • 2018
  • In this study, the electrochemical redox behavior of neodymium in non-aqueous electrolytes was investigated to confirm the possibility of neodymium metallurgy at room temperature. The non-aqueous electrolytes include ionic liquids such as $[C_4mim]PF_6$, $[C_4mim]Cl$, and $[P_{66614}]PF_6$, ethanol which are highly soluble in neodymium salts, and mixed electrolytes based on carbonate with highly electrochemical stability. The electrochemical redox properties of neodymium were better than those of other electrolytes in the case of the mixed electrolyte based on ethylene carbonate (EC)/di-ethylene carbonate (DEC). Ethanol was added to improve the physical properties of the mixed electrolyte. Thorough the analysis about ionic conductivity of EC/DEC ratio, ethanol content and $NdCl_3$ concentration, the best electrolyte composition was 50 vol% content of ethanol and 0.5 M of $NdCl_3$. Using cyclic voltametry and linear sweep voltametry, a current peak estimated at -3.8 V (vs. Pt-QRE) was observed as a limiting current of neodymium reduction. Potentiostatic electrolysis for 18 hours at room temperature at -6 V (vs. Pt-QRE) confirmed that metallic neodymium was electrodeposited.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer (폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발)

  • Li, Jingjing;Si, Yunpei;Nde, Dieudonne Tanue;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.461-466
    • /
    • 2021
  • In this article, a portable and cost-effective voltammetric biosensor with nanoparticles was developed for the measurements of heterogeneous nuclear ribonucleoprotein A1 protein (hnRNP A1) biomarker which can potentially be used for lung cancer diagnosis. Gold nanoparticles were first electrodeposited onto screen printed carbon electrode (SPCE) followed by immobilizing a single stranded DNA aptamer specific to hnRNP A1 onto the electrode surface. Ethanolamine was also used when immobilizing DNA aptamer on the surface to prevent signals from non-specific adsorption events. Sequential injection of hnRNP A1 biomarker and anti-hnRNP A1 conjugated with alkaline phosphatase (ALP) onto the aptamer chip surface allows to form the sandwich complex of DNA aptamer/hnRNP A1/ALP-anti-hnRNP A1 on the electrode surface which further reacted with 4-aminophenyl phosphate (APP). The electrocatalytic reaction of the enzyme, ALP, and the substrate, APP, resulting in the oxidative current response changes at -0.05 and -0.17 V (vs. Ag/AgCl) against the hnRNP A1 concentration was measured using cyclic and differential pulse voltammetry, respectively. The Au nanoparticles-integrated voltammetric biosensor was applied to analyze human normal serum solutions possibly suggesting potential applicability for lung cancer diagnosis.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.