• Title/Summary/Keyword: electrode sensor

Search Result 757, Processing Time 0.024 seconds

Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase (담배 잎-peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine의 정량)

  • Kwon, Hyoshik;Jeon, Byong-Suk;Pak, Yongnam
    • Analytical Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.98-105
    • /
    • 2015
  • The development of an enzymatic biosensor for dopamine determination based on multiwall carbon nanotubes (MWCNTs) and peroxidase obtained from the crude extract of burley tobacco (Nicotiana tabacum L.) was proposed. Peroxidase catalyzes the oxidation of dopamine to dopamine quinone. The influence on the response of analytical parameters of biosensors such as enzyme concentration, dopamine concentration, pH, and phosphate buffer solution concentration were investigated. The analytical parameters obtained, including sensitivity, linearity, and stability, were investigated. The proposed method for dopamine determination presented good selectivity even in the presence of uric acid and ascorbic acid. The sensor presented a higher response for dopamine in 0.010 M phosphate buffer at pH 6.50, with an applied potential of -0.15 V. The detection limit of the electrode was 2.7×10−6 M (S/N = 3) and the relative standard deviation of the measurements, which were repeated 10 times using 5.0×10−2 M dopamine, was 1.3%.

A Study on the Development of PD Simulation Pulse Generator for Evaluation of GIS Diagnosis System (GIS 진단시스템의 평가를 위한 PD 모의 펄스발생기 개발에 관한 연구)

  • Kim, Sungju;Chang, Sughun;Cho, Kook-hee
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • The expansion and stable operation of electric power facilities are important factors with development of industrial facilities in modern society. In high-voltage equipment such as GIS, the insulation characteristics may be deterioated by environment-friendly gas adaption and miniaturization. There is also the possibility of accidents due to insulation breakdown due to the deterioration of power facilities. Therefore, it is necessary to extend the diagnosis system to continuously monitor the danger signals of these power equipment and to prevent accidents. Most of the internal defects in the GIS system are conductive particles, floating electrode defects, protrusion defects, and the like. In this case, a partial discharge phenomenon is accompanied. These partial discharge signals occur irregularly and various noise signals are included in the field, so it is difficult to evaluate the reliability in the development of the diagnostic system. In this paper, a study was made on equipment capable of generating a partial discharge simulated signal that can be adjusted in size and frequency to be applied to a diagnostic device by electromagnetic wave detection method. The PD simulated pulse generator consists of a user interface module, a high-voltage charging module, a pulse forming circuit, a voltage sensor and an embedded controller. In order to simulate the partial discharge phenomenon similar to the actual GIS, a discharge cell was designed and fabricated. The application of the prototype pulse generator to the commercialized PD diagnosis module confirmed that it can be used to evaluate the performance of the diagnostic device. It can be used for the development of GIS diagnosis system and performance verification for reliability evaluation.

An Electrical Properties of Antifuses based on $BaTiO_3/SiO_2$ films ($BaTiO_3/SiO_2$로 구성된 안티퓨즈의 전기적 특성)

  • Lee, Young-Min;Lee, Jae-Sung;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.364-371
    • /
    • 1998
  • A novel antifuse has been developed for field programmable gate arrays (FPGA's) as a voltage programmable link with Al/$BaTiO_3/SiO_2$/TiW-silicide. The proper program voltage can be obtained by adjusting the deposition thickness of $BaTiO_3$ film. When a negative voltage was applied at bottom TiW-silicide electrode of the antifuse, based on $BaTiO_3(120{\AA})$/$SiO_2(120{\AA})$, the program voltage was about l4.4V and on-resistances were ranged between 40 and $50{\Omega}$. The current-voltage characteristics of antifuses are consistent with a Frenkel-Poole conduction model. However, there are some deviations depending on bias polarity that are probably due to the difference in the interface properties between Al/$BaTiO_3$ and TiW-silicide/$SiO_2$.

  • PDF

Quality Level Classification of ECG Measured using Non-Constraint Approach (무구속적 방법으로 측정된 심전도의 신뢰도 판별)

  • Kim, Y.J.;Heo, J.;Park, K.S.;Kim, S.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.161-167
    • /
    • 2016
  • Recent technological advances in sensor fabrication and bio-signal processing enabled non-constraint and non-intrusive measurement of human bio-signals. Especially, non-constraint measurement of ECG makes it available to estimate various human health parameters such as heart rate. Additionally, non-constraint ECG measurement of wheelchair user provides real-time health parameter information for emergency response. For accurate emergency response with low false alarm rate, it is necessary to discriminate quality levels of ECG measured using non-constraint approach. Health parameters acquired from low quality ECG results in inaccurate information. Thus, in this study, a machine learning based approach for three-class classification of ECG quality level is suggested. Three sensors are embedded in the back seat, chest belt, and handle of automatic wheelchair. For the two sensors embedded in back seat and chest belt, capacitively coupled electrodes were used. The accuracy of quality level classification was estimated using Monte Carlo cross validation. The proposed approach demonstrated accuracy of 94.01%, 95.57%, and 96.94% for each channel of three sensors. Furthermore, the implemented algorithm enables classification of user posture by detection of contacted electrodes. The accuracy for posture estimation was 94.57%. The proposed algorithm will contribute to non-constraint and robust estimation of health parameter of wheelchair users.

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films (산화아연 나노구조 박막의 일산화탄소 가스 감지 특성)

  • Hung, Nguyen Le;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Design of E-Tongue System using Neural Network (신경회로망을 이용한 휴대용 전자 혀 시스템의 설계)

  • Jung, Young-Chang;Kim, Dong-Jin;Kim, Jeong-Do;Jung, Woo-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.149-158
    • /
    • 2005
  • In this paper, we have designed and implemented a portable e-tongue (electronic tongue) system using MACS (multi array chemical sensor) and PDA. The system embedded in PDA has merits such as comfortable user interface and data transfer by internet from on-site to remote computer. MACS was made up 7 electrodes (${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH) and a reference electrode. For learning the system, we adapted the Levenberg-Marquardt algorithm based on the back-propagation, which could iteratively learned the pre-determined standard patterns, in e-tongue system. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. The e-tongue was applied to whiskeys and cognac (one high level whisky, one low level whiskey, two cognac) and 2 sample whiskeys for each standard patterns and unknown patterns. The relationship between the standard patterns and unknown patterns can be easily analyzed.

  • PDF

Fabrication and characteristics of electrostatic micro mirror for optical disk drives (광 저장장치 응용을 위한 마이크로 미러의 제작과 그 특성)

  • Kim, Jong-Wan;Seo, Hwa-Il;Lee, Woo-Young;Rim, Kyung-Hwa;Jang, Young-Jo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. The mirror was fabricated by using MEMS technology. Especially, the Process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the process reliability. The mirror size was $2.5mm{\times}3mm$ and it needed about 35V for displacement of $3.2{\mu}m$.

Development and Applications of a Wireless Bioelectric Signal Measurement System on the Electrodes (전극 상의 일체형 무선 생체전기신호 측정 시스템 개발 및 응용)

  • Joo, Se-Gyeong;Kim, Hee-Chan
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-94
    • /
    • 2003
  • Electromyogram (EMG) is the bioelectric signal induced by motor nerves. Analyzing EMG with the movement produced by muscle contraction, we can provide input commands to a computer as a man-machine interface as well as can evaluate the patient's motional abnormality. In this paper, we developed an integrated miniaturized device which acquires and transmits the surface EMG of an interested muscle. Developed system measures $60{\times}40{\times}25mm$, weighs 100g. Using an amplifier circuitry on the electrodes and the radio frequency transmission, the developed system dispenses with the use of cables among the electrodes, amplifier, and the post processing system (personal computer). The wiring used in conventional systems can be obstacle for natural motion and source of motion artifacts. In results, the developed system improves not only the signal-to-noise ration in dynamic EMG measurement, but also the user convenience. We propose a new human-computer interface as well as a dynamic EMG measurement system as a possible application of the developed system.

Preparation and Characterization of Electro-Active IPMC(Ion-exchange Polymer Metal Composite) Actuator (전기활성 IPMC(ion-exchange Polymer Metal Composite) 구동기 제조 및 구동특성 연구)

  • 이준호;이두성;김홍경;이영관;최혁렬;김훈모;전재욱;탁용석;남재도
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • The low actuation voltage and quick bending response of IPMC(ion-exchange polymer metal composite) are considered attractive for the construction of various types of actuators. In this study, in order to develop a new type actuators by using the IPMC platinum electrode of IPMC are fabricated by using electroless impregnation-reduction method plating. As the platinum-plating times are increased, IPMC performance was improved in terms of bending displacement and force due to the enhanced surface conductivity. In addition, we investigated the basic actuation characteristics of resonance frequency and actuator length as well as the effect of water uptake and ion mobility. Using the classical laminate theory(CLT), a modeling methodology was developed to predict the deformation, bending moment, and residual stress distribution of anisotropic IPMC thin plates. In this modeling methodology, the internal stress evolved by the unsymmetric distribution of water inside IPMC was quantitatively calculated and subsequently the bending moment and the curvature were estimated for various geometry of IPMC actuator.

State Observer Based Modeling of Voltage Generation Characteristic of Ionic Polymer Metal Composite (상태 관측기 설계 기법을 적용한 이온성 고분자 금속 복합체의 전압 생성 특성 모델링)

  • Lee, Hyung-Ki;Park, Kiwon;Kim, Myungsoo
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.383-388
    • /
    • 2015
  • Ionic Polymer-Metal Composite (IPMC) consisting of soft membrane plated by platinum electrode layers on both surfaces generates electric energy when subjected to various mechanical stimuli. The paper proposes a circuit model that describes the physical composition of IPMC to predict the voltage generation characteristic corresponding to bending motion. The parameter values in the model are identified to minimize the RMS error between the real and simulated outputs. Following the design of IPMC circuit model, the state observer of the model is designed by using pole placement technique which improves the model accuracy. State observer design technique is also applied to find the inverse model which estimates the input bending angles from the output voltage data. The results show that the inverse model estimates input bending angles fairly well enough for the further applications of IPMC not only as an energy harvester but also as a bending sensor.