• Title/Summary/Keyword: electrode impedance

Search Result 687, Processing Time 0.02 seconds

An Analysis on the Over-Potentially Deposited Hydrogen at the Polycrystalline $Ir/H_2SO_4$ Aqueous Electrolyte Interface Using the Phase-Shift Method (위상이동 방법에 의한 다결정 $Ir/H_2SO_4$ 수성 전해질 계면에서 과전위 수소흡착에 관한 해석)

  • Chun Jagn Ho;Mun Kyeong Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The relation between the phase-shift profile fur the intermediate frequencies and the Langmuir adsorption isotherm at the poly-Ir/0.1 M $H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The simplified interfacial equivalent circuit consists of the serial connection of the electrolyte resistance $(R_s)$, the faradaic resistance $(R_F)$, and the equivalent circuit element $(C_P)$ of the adsorption pseudoca-pacitance $(C_\phi)$. The comparison of the change rates of the $\Delta(-\phi)/{\Delta}E\;and\;\Delta{\theta}/{\Delta}E$ are represented. The delayed phase shift $(\phi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\phi=tan^{-1}[1/2{\pi}f(R_s+R_F)C_P]$. The phase-shift profile $(-\phi\;vs.\;E)$ for the intermediate frequency (ca. 1 Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm $(\theta\;vs.\;E)$. The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-Ir/0.1 M $H_2SO_4$ electrolyte interface are $2.0\times10^{-4}$ and 21.1kJ/mol, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).

A Study on Performance of Indirect-contact Driven-right-leg Ground in Indirect-contact ECG Measurement (간접접촉 심전도 측정에서의 간접접촉 오른발 구동 접지 성능에 대한 연구)

  • Lim, Yong-Gyu;Kim, Ko-Keun;Park, Kwang-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.4
    • /
    • pp.280-287
    • /
    • 2008
  • For the reduction of common-mode noise level in Indirect-contact ECG (IDC-ECG) measurement a driven-right-leg grounding method was a lied to the IDC-ECG. Because the IDC-ECG does not require any direct contact between the electrodes and the human skin. it is adequate for un-constraining long-term ECG measurement at home and its various applications are now under development. However, larger 60 Hz noise induced by power line a ears in IDC-BCG than in conventional ECG, that is a restriction of IDC-ECG a application. In this study, the driven-right-leg ground which has been used in conventional direct-contact ECG, was adapted to the IDC-ECG measurement by feedback of the inversion of amplified common-mode noise to the body through the conductive fertile laid on the chair seat By this study, indirect-contact driven-right-leg ground was developed and it was shown to work stably. It was shown that the level of 60Hz power line noise was reduced to about -40 dB when the driven-right-leg gain was 1000. This study shows that we can extend the upper limit of the frequency band of IDC-ECG to 100Hz from 30Hz which is conventional upper limit in IDC-ECG, and we can raise the ground impedance between the body and conductive textile. So it is expected that the application area of the IDC-ECG will be extended by the results of this study.

  • PDF

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

The Relation between the Phase-Shift Profile for the Intermediate Frequencies and the Langmuir Adsorption Isotherm (중간주파수에서 위상이동 변화와 Langmuir흡착등온식 사이의 관계)

  • Chun Jang Ho;Mun Kyeong Hyeon;Cho Chong Dug
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The relation between the phase-shift profile for the intermediate frequencies and the Langmuir adsorption isotherm at the poly-$Pt/0.1\;M\;H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The suggested interfacial equivalent circuit consists of the serial connection of the electrolyte resistance ($R_S$), the faradaic resistance $(R_F)$ and the equivalent circuit element $(C_P)$ of the adsorption pseudocapacitance $(C_\varphi)$. The delayed phase shift $(\varphi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\varphi=-tan^{-1}[1/2{\pi}f(R_s+R_F)C_p]$. The phase-shift profile $(\varphi\;vs.\;E)$ for the intermediate frequency (ca. 6Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm (9 vs. E). The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-$Pt/0.1\;M\;H_2SO_4$ electrolyte interface are $1.8\times10^{-4}\;and\;21.4kJ/mol$, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).

Preparation of Solid Polymer Electrolytes by Ultraviolet Radiation and the Electrochemical Properties of Activated Carbon Supercapacitor Adopting Them (자외선 조사에 의한 고체 고분자 전해질의 제조와 이를 채용한 활성탄 수퍼커패시터의 전기화학적 특성)

  • Won, Jung Ha;Kim, Yong Joo;Lee, Young-Gi;Kim, Kwang Man;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Solid polymer electrolyte films are prepared by ultraviolet radiation in the mixtures of an ionic liquid salt (1-ethyl-3-methylimidazolium tetrafluoroborate, $EMIBF_4$) and solvent (acetonitrile (ACN) or propylene carbonate(PC)), and an oligomer (poly(ethylene glycol)diacrylate, PEGDA, 45-60 wt.%). Electrochemical properties of activated carbon supercapacitors adopting the solid polymer electrolyte films as a separator are also examined by cyclic voltammetry and impedance measurement techniques. As a result, the supercapacitor adopting the PEGDA as much as 45 wt.% exhibits a superior capacitance of $46Fg^{-1}$ at $20mVs^{-1}$. It seems that this is due to fast kinetics of ion conduction by sufficient film flexibility, which can be allowed by comparatively weak ultraviolet curing of small anount of the PEGDA.

Chimie Douce Reaction to Layered High-$T_c$ Superconducting / Super-ionic Conducting Heterostructures

  • Kim, Young-Il;Hwang, Seong-Ju;Yoo, Han-Ill;Choy, Jin-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.95-98
    • /
    • 1998
  • We have developed new type of superconducting-superionic conducting nanohybrids, $Ag_xI_wBi_2Sr_2Ca_{n-1}Cu_nO_y$ (n=1 and 2) by applying the chimie douce reaction to the superconducting Bi-based cuprates. These nanohybrids can be achieved by the stepwise intercalation whereby the $Ag^+$ ion is thermally diffused into the pre-intercalated iodine sublattice of $IBi_2Sr_2Ca_{n-1}Cu_nO_y$. According to the X-ray diffraction analysis, the Ag-I intercalates are found to have an unique heterostructure in which the superionic conducting Ag-I layer and the superconducting $IBi_2Sr_2Ca_{n-1}Cu_nO_y$ layer are regularly interstratified with a remarkable basal increment of ~7.3$\AA$. The systematic XAS studies demonstrate that the intercalation of Ag-I accompanies the charge transfer between host and guest, giving rise to a change in hole concentration of $CuO_2$ layer and to a slight $T_c$ change. The Ag K-edge EXAFS result reveals that the intercalated Ag-I has a $\beta$-AgI-like local structure with distorted tetrahedral symmetry, suggesting a mobile environment for the intercalated $Ag^+$ ion. In fact, from ac impedance analyses, we have found that the Ag-I intercalates possess a fast ionic conductivity ($\sigma_i=10^{-1.4}\sim 10^{-2.6}\Omega^{-1}\textrm{cm}^{-1}\;at\;270^{\circ}C$ with an uniform activation energy ($\DeltaE_a=0.22\pm 0.02$ eV). More interesting finding is that these intercalates exhibit high electronic conducting as well as ionic ones ($t_i$=0.02~0.60) due to their interstratified structure consisting of superionic conducting and superconducting layers. In this respect, these new intercalates are expected to be useful as an electrode material in various electrochemical devices.

  • PDF

Pallidotomy Guided by MRI and Microrecording for Parkinson's Disease (파킨슨환자의 자기공명영상과 미세전극기록을 이용한 담창구 파괴술)

  • Lee, Kyung Jin;Son, Hyung Sun;Park, Sung Chan;Cho, Kyung Keun;Park, Hae Kwan;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • Objective : The exact position of the lesion during the pallidotomy is critical to obtain the clinical improvement of parkinson's disease without damage to surrounding structure. Ventriculogrphy, CT(computed tomograpy) or MRI(magnetic resonance imaging) have been used to determine the initial coordinates of stereotactic target for pallidotomy. The goal of this study was to determine whether microelectrode recording significantly improves the neurophysiologic localization of the target obtained from MRI. Methods : Twenty patients were studied. They underwent a unilateral pallidotomy. Leksell frame was applied and T1 axial images parallel to the AC-PC(anterior commissure-posterior commissure) plane using a 1.5 Tesla MRI with 3mm slice thickness were obtained. Anteroposterior coordinate of target was chosen at 2mm in front of the midcommissural point and lateral coordinate between 19 and 22mm from the midline. The vertical coordinate was calculated on coronal slice using a fast spin echo inversion recovery sequence(FSEIR) related to the position of the choroidal fissure and ranged over 4-5mm below the AC-PC plane. Confirmation of the anatomical target was done on axial slices using the same FSEIR sequence . Microrecording was done at the pallidum contralateral to the symptomatic side using an electrode with a tip diameter of $1{{\mu}m}$ diameter tip and 1.1-1.4 mOhm impedance at 1000Hz. Electrophysiologic localization of the target was also confirmed intraoperatively by macrostimulation. Results : Microrecording techniques were reliable to define the transition from the base of the pallidum which was characterized by the disappearance of spike activity and by the change of the audible background activity. Signals from high amplitude neurons firing at 200-400Hz were recorded in the pallidal base. X, Y and Z coordinates of target obtained from the MRI were within 1mm from the X, Y, Z coordinates obtained with microrecording in 16 patients (80%), 15 patients(75%), 10 patients(50%) respectively. The difference of Y coordinate between on MRI and on microrecording was 4mm in only one patient. Conclusion : The MRI was accurate to localize the target within 1mm of the error from microrecording target in 70% of the patients. 4mm discrepancy was observed only once. We conclude that MRI alone can be used to determine the target for pallidotomy in most patients. However, microrecording technique can still be extremely valuable in patents with aberrant anatomy or unusual MRI coordinates. We also consider physiologic confirmation of the target using macrostimulation to be mandatory in all cases.

  • PDF

Cathode materials advance in solid oxide fuel cells (고체산화물연료전지 공기극의 재료개발동향)

  • Son, Young-Mok;Cho, Mann;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A solid oxide fuel cells(SOFC) is a clean energy technology which directly converts chemical energy to electric energy. When the SOFC is used in cogeneration then the efficiency can reach higher than 80%. Also, it has flexibility in using various fuels like natural gases and bio gases, so it has an advantage over polymer electrolyte membrane fuel cells in terms of fuel selection. A typical cathode material of the SOFC in conjunction with yttria stabilized zirconia(YSZ) electrolyte is still Sr-doped $LaMnO_3$(LSM). Recently, application of mixed electronic and ionic conducting perovskites such as Sr-doped $LaCoO_3$(LSCo), $LaFeO_3$(LSF), and $LaFe_{0.8}Co_{0.2}O_3$(LSCF) has drawn much attention because these materials exhibit lower electrode impedance than LSM. However, chemical reaction occurs at the manufacturing temperature of the cathode when these materials directly contact with YSZ. In addition, thermal expansion coefficient(TEC) mismatch with YSZ is also a significant issue. It is important, therefore, to develop cathode materials with good chemical stability and matched TEC with the SOFC electrolyte, as well as with high electrochemical activity.

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Structural and electrochemical characterization of K2NiF4 type layered perovskite as cathode for SOFCs (K2NiF4 type 층상 페롭스카이트 구조 La(Ca)2Ni(Cu)O4-δ의 SOFC 양극 특성 및 결정구조 평가)

  • Myung, Jae-ha;Hong, Youn-Woo;Lee, Mi Jai;Jeon, Dae-Woo;Lee, Young-Jin;Hwang, Jonghee;Shin, Tae Ho;Paik, Jong Hoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.116-120
    • /
    • 2015
  • $La_2NiO_{4+{\delta}}$ based oxides, a mixed electronic-ionic conductors (MIECs) with $K_2NiF_4$ type structure, have been considerably investigated in recent decades as electrode materials for advanced solid oxide fuel cells (SOFCs) due to their high electrical conductivity, and oxidation reduction reaction (ORR). In this study, structure properties of $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ were studied as a potential cathode for intermediate temperature SOFCs (IT-SOFCs).