• Title/Summary/Keyword: electrode edge effect

Search Result 28, Processing Time 0.029 seconds

Effect of the Electrode Edge on the Viewing Angle Property of a Patterned Vertical Alignment Liquid Crystal Cell

  • Choi, Jung-Min;Ji, Seung-Hoon;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.1-5
    • /
    • 2008
  • This paper investigates the effect of the electrode edge of a patterned vertical alignment (PVA) liquid crystal (LC) device on the viewing angle characteristics. In general, a transmissive LCD applies an LC layer with half-wave retardation for a bright state and with zero retardation for a dark state. The retardation of the LC layer would be distorted in each point, however, when a voltage is applied because of the non-uniform voltage distribution in the electrode edge effect. In this paper, the feasibility of the full effect of the electrode edge on the viewing angle property is considered, and the optical viewing angles of the VA LCD with a uniform half-wave LC layer and the PVA LCD with a practical non-uniform LC layer are compared.

Organic field-effect transistors with step-edge structure

  • Kudo, Kazuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.91-93
    • /
    • 2008
  • The organic field-effect transistors with step-edge structure were fabricated. Source and drain electrodes were obliquely deposited by vacuum evaporation. The step-edge of the gate electrode serve as a shadow mask, and the short channel is formed at the step-edge. The excellent device performances were obtained.

  • PDF

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.

Effect of Asymmetric Electrode Structure on Electron Emission of the Pb(Zr0.8Ti0.2)O3 Ferroelectric Cathode (Pb(Zr0.8Ti0.2)O3강유전 음극에서 비대칭 전극구조가 전자 방출 특성에 미치는 영향)

  • 박지훈;김용태;윤기현;김태희;박경봉
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.92-98
    • /
    • 2002
  • To investigate the electrode structural effect on the ferroelectric electron emission, the electric field distribution in a 2-dimensional structure was calculated as a function of upper electrode diameter, and the switching charge density and emission charge were measured simultaneously. The simulation of the electric field distribution showed that an asymmetric electrode structure could cause a stray field on the bare surface of the ferroelectric cathode near the edge of upper electrode. The distance of stray field from the electrode edge increased with increasing ferroelectric thickness, but it did not depend on the upper electrode diameter. The switching charge density increased more on the cathode with smaller upper electrode diameter. This was attributed to the stray field on the bare ferroelectric surface near the electrode edge, because the stray field for the asymmetric ferroelectric cathode enhanced polarization switching near the electrode edge. From the switching charge density, the distance of stray field from the electrode edge was calculated as about 11-14${\mu}{\textrm}{m}$. The threshold voltage of electron emission was 61-68 kV/cm, which was almost 3 times lager than the coercive voltage. The threshold voltage was not determined just by coercive voltage, but by strength and distance of the stray-field, which largely depended on the geometrical structure of ferroelectric cathode.

Effect of Edge-Chemistry on Graphene-Based Hybrid Electrode Materials for Energy Storage Device

  • Hyo-Young Kim;Ji-Woo Park;Seo Jeong Yoon;In-Yup Jeon;Young-Wan Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.

A Study on the prevention of edge effect reducing dielectric strength (절연내력에 미치는 주변효과의 방지에 관한 연구)

  • Kwak, Hee-Ro;Shin, Hee-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.267-271
    • /
    • 1987
  • The test cell for preventing the edge effect reducing the intrinsic breakdown strength of polypropylene film and measuring the intrinsic breakdown strength of the film was developed. The new approach was to develope an electrode system with an edge region which is carefully graded over an extended distance. The new test arrangement employed a central circular electrode at high voltage and a set of nine concentric surrounding rings each controlled in potential by external grading resistors to be at decreasing potentials from that at the center in 10% increments. Two different size structures using the same basic principle were tried and were both found to be successful. The test electrodes were manufactured using standard printed circuit technology and were chosen to be copper on high dielectric constant GIO board.

  • PDF

Study on the Effect of the Operation Voltage according to the Reverse Twist for the fringe Field Switching (FFS) Mode (FFS 모드에서 Reverse Twist가 구동전압에 미치는 영향에 관한 연구)

  • Kim, Mi-Sook;Jung, Yeon-Hak;Seen, Seung-Min;Kim, Hyang-Yul;Kim, Seo-Yoon;Lim, Young-Jin;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1033-1037
    • /
    • 2005
  • We have studied on the effect of the operation voltage according to the reverse twist for the different fringe field switching (FFS) structure. The FFS structure with a vertically patterned edge of the pixel electrode (VPP) has lower operation voltage comparing to the one with a horizontally patterned edge of the pixel electrode (HPP). The reason is like that the number of the pattern of the pixel edge for the VPP structure is one third comparing with the HPP structure and thus, there is small reverse twist area for the VPP structure. Actually, the reverse twist disturbs the twist of LC near adjacent active area, result that LCs near there have the unstable dynamics. That is, the operation voltage increases as the reverse twist area increases. Therefore, it is very important to design pixel electrode with a small reverse twist region for the FFS mode.

Effect of Domain Switching on Cracking in Ferroelectric Ceramic Actuators (분역회전이 강유전체 세라믹 액추에이터 내의 균열발생에 미치는 영향)

  • Jeong Kyoung Moon;Kim Jae Yun;Beom Hyeon Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.113-119
    • /
    • 2005
  • A crack emanating from an internal electrode or a conducting damage path in ferroelectric ceramic actuators is analyzed. The boundary of the domain switching zone near the edge of the internal electrode in a ceramic multilayer actuator is determined based on the nonlinear electric theory. The stress intensity factor induced by a ferroelectric domain switching under small scale conditions is numerically obtained for flaws of various sizes near the electrode edge. It is found that stress intensity factor near the crack tip depends on the material property of the electrical nonlinearity.

The Thickness Dependence of Edge Effect in Thin Insulating Films

  • Song Jeong-Myen;Moon Byung-Moo;Sung Yung-Kwon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • This paper deals with the edge effect in thin insulating films, focusing on their dependence on film thickness. The finding is that the electric field is lowered at the edge as the film thickness is reduced, which, in turn, is closely related to dielectric breakdown voltage. In order to analyze this phenomenon, a simple capacitor model is introduced with which dependence of dielectric breakdown voltage around the electrode edge on the film thickness is explained. Due to analytical difficulty to get the expression of electrical field strength at the edge, an equivalent circuit approach is used to find the voltage expression first and then the electric field expression using it. The relation gets to an agreement with the experimental findings shown in the paper. This outcome may be extended to solve similar problems in multi-layer insulating films.

Simulation of Charging Process in Forming Electret for Sensor Material (센서재료용 일렉트렛트 형성에 대전과정 시뮬레이션)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.185-188
    • /
    • 2011
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current(TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method(FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF