• Title/Summary/Keyword: electrode area

Search Result 973, Processing Time 0.028 seconds

Role of Posterior Intralaminar Thalamic Nuclei in Acupuncture Analgesia in Rats (침진통(鍼鎭痛) 작용에 있어서 시상 후방 층판내핵(속방핵)의 역할)

  • Roh, Sik;Min, Byung-Il;Yoon, Sang-Hyub
    • The Journal of Korean Medicine
    • /
    • v.20 no.3 s.39
    • /
    • pp.36-44
    • /
    • 1999
  • Objectives: It has been well known that electroacupuncture(EA) has an analgesic effect and there is a pain control system in the central nervous system(CNS). The pain control system is composed of three major nuclei, which are periaqueductal gray(PAG), raphe nuclei, and the pain inhibitory complex located in the spinal cord. It has been suggested that the analgesic effect of EA might be the result of activation of the pain control system in the CNS. However, there may be a possibility that other nuclei are also involved in this pain modulation. Thus, we investigated whether the posterior intralaminar thalamic nuclei (PTIN) are involved in the pain modulation. Methods: To measure the level of pain, the jaw opening reflex (JOR) was used as a pain index. The magnitude of JOR is estimated by averaging the area of 10 successive responses. JOR was evoked by tooth-pulp stimulation with bipolar electrode carrying stimulus with the following parameters: intensity ranging from 420uA to 680ulA, 0.3ms duration of square pulse, and 0.5 Hz. Hapkog($LI_4$) and Taechung ($LR_3$) were the chosen acupoints. The Hapkog point was stimulated ipsilaterally at 5V, 3 Hz, for 15min in total, and the Taechung was stimulated at 2-3 V, 3 Hz, and for a total of 15 or 30 minutes. Different intensities of stimulation were given the PITN; one was given at $300{\mu}A$ and the other was at 500uA. The position stimulated in these nuclei by Paxinos Atlas was AP; from bregma $-4.0{\sim}-4.3mm,\;L; 0.5{\sim}1.8mm,\;D;\;4.8{\sim}6.3mm$. Results: The Hapkog point had a significant analgesic effect (P<0.05). However, the Taechung point had no effect. Both types of stimulation in the PITN did not reveal any analgesic effects. Conclusions: From these results, it was suggested that the posterior intralaminar thalamic nuclei are not involved in the modulation of pain.

  • PDF

A STUDY ON CORROSION BEHAVIOR OF DENTAL AMALGAMS AS A FUNCTION OF TIME (시간경과에 따른 아말감의 부식거동에 관한 연구)

  • Lee, Myung-Jong;Kim, Yung-Hai;Lee, C.S.;Yoon, Soo-Han;Lim, Sung-Sam;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.6-15
    • /
    • 1991
  • The purpose of this study was to observe in vitro chloride corrosion behavior from 5 kinds of amalgam (Caulk spheracal, Amalcap, Dispersalloy, Tytin, Sybralloy) as a function of time after tritruration by using potentiostat. After each amalgam alloy and Hg was triturated as the direction of the manufacturer by the mechanical amalgamator, the triturated mass was inserted the cyrindrical matal mold ($12{\times}10mm$) and was condensed by using routine manner. The specimen was removed from the mold and was stored at room temperature for 1 week, 1 month and 3 months, and standard surface preparation was routine carried out. The 0.9% saline solution was used as electrolyte in pH 6.8~7.0 at $30{\pm}0.5.^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of 1 week, 1 month and 3 month old specimens. The scan rate was 1 mV/sec and the surface area of amalgam exposed to the solution was $0.65\;Cm^2$ for each specimen. All potentials reported are with respect to a silver / silver chloride electrode (SSE). The following result was obtained. 1. All amalgam specimens became more noble corrosion potentials which represent the improved corrosion resistance as the time elapsed. 2. Three kinds of high copper amalgam always exhibited more noble potential than low copper amalgam at 1 week, 1 month and 3 months. 3. Two kinds of low copper amalgam had the similar polarization curve pattern with 3 current peaks at each time period and current densities associated with these peaks were decreased as aging especially in caulk spherical amalgam. 4. All kinds of high copper amalgam had the similar polarization curve pattern with absence of prominent current peak at each time period, but the polarization curve of D amalgam had one apparent current peak at 1 week.

  • PDF

ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF DENTAL AMALGAM IN ARTIFICIAL SALIVA (인공타액에서 아말감의 부식거동에 관한 전기화학적 연구)

  • Kim, Yeoung-Nam;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.221-235
    • /
    • 1988
  • The purpose of this study was to observe characteristic properties through the polarization curves and EMPA images from 4 different types of amalgam obtained by using the potentiostats (EG & G PARC) & EPMA (Jeol JSM-35), to investigate the degree of corrosion of each phase of amalgam on the oxidation peak, and to identify corrosion products from the corroded amalgam by use of X-ray diffractometer(Rigaku). After each amlgam alloy and Hg were triturated as the direction of the manufacturer by means of the mechanical amalgamator(Shofu), the triturated mass was inserted into the cylindrical metal mold which was 12mm in diameter and 10mm in height and was condensed by means of routine manner. The specimen was removed from the mold and stored at room temperature for about 7 days. The standard surface preparation was routinely carried out. Anodic polarization measurement was employed to compare the corrosion behaviours of the amalgams in 0.9% saline solution(pH6.8~7.0) and artificial saliva (pH6.8~7.0) at $37^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of specimen in electrolyte and the potential scan was begun at the potential of 100mV cathodic from the corrosion potential. The scan rate was 1mV/sec and the surface area of amalgam exposed to the solution was 0.64$cm^2$ for each specimen. All the potentials reported are with respect to a saturated calomel electrode (SCE). EPMA images on the determined oxidation peaks of each amalgam in artificial saliva were observed. X-ray diffraction patterns of each sample were recorded before and after polarization in artificial saliva (Aristaloy, Caulk Spherical, Dispersalloy and Tytin: at +770mV, +585mV, +8.10m V and +680m V respectively) by use of a recording diffractometer. Nickel filtered Cu $K_{{\alpha}_1}$ radiation was used and sample was scanned at $4^{\circ}(2{\theta})/min.$ from $25^{\circ}$ to $80^{\circ}$. The following results were obtained. 1. Oxidation peak potential in artificial saliva shifted to more anodic direction than that in saline solution. 2. The corrosion potential of high copper amalgam was more anodic than the potential of low copper amalgam. 3. The current density was lower in artificial saliva than in saline solution. 4. One of the corrosion products, AgCl was identified by X-ray diffraction analysis. 5. ${\gamma}_2$ phase was the most susceptible to corrosion and e phase was stable in low copper amalgam and ${\eta}$' phase and Ag-Cu eutectic were susceptible to corrosion in high copper amalgam.

  • PDF

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

Fabrication of TiO2/polyelectrolyte thin film for a methyl mercaptan gas sensor (메칠멜캅탄 가스센서용 TiO2/전해질폴리머 박막 제조)

  • Kim, Jin-Ho;Hwang, Jong-Hee;Lee, Mi-Jai;Kim, Sei-Ki;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.221-226
    • /
    • 2010
  • Quartz crystal microbalance (QCM) gas sensor to detect methyl mercaptan ($CH_3SH$) gas was fabricated by depositing $TiO_2$ nanoparticles and polyelectrolyte on the electrode of QCM. The $TiO_2$/poly(sodium 4-styrenesulfonate) (PSS) thin film fabricated by a layer-by-layer self-assembly (LBL-SA) method showed a high surface area and increased the sensitivity of gas sensor. When the QCM sensors coated with triethanolamine (TEA) or ($TiO_2$/PSS) were exposed to methyl mercaptan gas (1.0 ppm), the frequency shifts of QCM with TEA casting film and $TiO_2$/PSS thin film were ca. 9 Hz and ca. 24 Hz, respectively. As the bilayer number of ($TiO_2$/PSS) increased, the frequency shift of QCM sensor with ($TiO_2$/PSS) thin film was gradually increased. In addition, the frequency shift of QCM sensor was gradually increased as the concentration of methyl mercaptan gas increased from 0.5 ppm to 2.0 ppm. In this study, the surface morphology and sensor property of QCM sensor coated with ($TiO_2$/PSS) thin film were measured.

The Influence of Participation of Physical Activity in Adolescence and Senescence Adults on Affective Cognition (청년기·노년기 성인의 신체활동 참여가 정서인지에 미치는 영향)

  • Yoon, Byungtak;Ryu, Kwangmin;Kim, Jingu
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.41-54
    • /
    • 2017
  • Physical activity has positive effects on cognitive functions by aging. However, it is rare to find research that have scientifically investigated the effects on the affective-cognitive function. Thus, this study aims to brain-scientifically research its effects of physical activity on the affective-cognitive function of adults in adolescence and senescence. As subjects of this study, a total of 60 males adults in D region were selected, and then equally divided into four groups of young exercise group(25~35y/o), young non-exercise group(26~35y/o), old exercise group(60~70y/o), and old non-exercise group(60~70y/o). As experiment tools, the EEG measuring equipment and International Affective Picture System(IAPS) were used. The experiment of this study used an affective-cognitive task where subjects pressed a button depending on emotional valence(positive, neutral, negative) shown in the pictures. During the task, EEG measured eight areas(Fp1, Fp2, Fz, C3, C4, Cz, T3, T4) out of brain areas in accordance with the international 10-20 electrode system, EEG was measured. For statistical analysis, a three-way ANOVA on $4(group){\times}3(stimulus){\times}8(area)$ was conducted. The results showed main effects of group in both reaction time and accuracy, and also in the latency of P3. And there was an interaction between group and stimulus the amplitude of P3. In conclusion, Physical activity has positive effects on the affective-cognitive function of people in adolescence and senescence.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.