• Title/Summary/Keyword: electrode activation

Search Result 194, Processing Time 0.029 seconds

Study on High Density Activated Carbons for Electrode Materials of Supercapacitor (초고용량 커패시터 전극활성물질용 고밀도 활성탄 제조 및 특성 연구)

  • Roh, Kwang Chul;Park, Jin Bae;Lee, Chul-Tae;Park, Chul Wan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.381-385
    • /
    • 2007
  • High density activated carbons electrode materials, for supercapacitor were prepared by chemical KOH activation of cokes as the starting material under Ar atmosphere. By controlling the synthesis conditions and reducing KOH quantity in the activation step, the specific surface area of the product was decreased. BET surface area was measured to be $500{\sim}1260m^2/g$, and the electrode density was in the range of $0.68{\sim}0.83g/cm^3$. Volumetric specific capacitance (unit cell test) was as high as 20 F/cc, which corresponds to gravimetric specific capacitance of about 95 F/cc on the basis of half cell test. It should be noted that the specific capacitance of the activated carbons prepared in this study is superior to that of commercial activated carbons.

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung;Ryu, Jae Kyung;Bramhe, Sachin N.;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.643-648
    • /
    • 2013
  • Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.

Corrosion Behavior of Nanotube Formed on the Bone Plate of Ti-6Al-4V Alloy for Dental Use (치과용 Ti-6Al-4V 합금 골 고정판 표면에 형성된 나노튜브의 부식거동)

  • Kim, Won-Gi;Lee, Chung-Hwan;Chung, Chae-Heon;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • Titanium and titanium alloys are widely used for orthopedic and dental implants for their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. In this study, corrosion behaviors of nanotube formed on the bone plate of Ti-6Al-4V alloy for dental use have been investigated. $TiO_2$ nanotubes were formed on the dental bone plates by anodization in $H_3PO_4$ containing 0.6 wt % NaF solution at $25^{\circ}C$. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Anodization was carried out using a scanning potentiostat (EG&G Co, Model 263A USA), and all experiments were conducted at room temperature. The surface morphology was observed using field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The corrosion behavior of the dental bone plates was examined using potentiodynamic test(potential range of -1500~2000 mV) in a 0.9% NaCl solution by potentiostat (EG&G Co, PARSTAT 2273. USA). The inner diameter of nanotube was about 150~180 nm with wall thickness of about 20 nm. The interspace of nanotube to nanotube was 50 nm. The passive region of the nanotube formed bone plates showed the broad range compared to non-nanotube formed bone plates. The corrosion surface of sample was covered with corrosion products.

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors (고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조)

  • Sung, Ki-Wook;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.623-630
    • /
    • 2019
  • Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.

Electrochemical Properties of the AB2-type Metal Hydride Electrode Prepared by Ball Milling (Ball milling한 AB2계 금속수소화물 전극의 전기화학적 특성)

  • Choi, Seung-Jun;Shim, Jong-Su;Oh, Se-Ung;Noh, Hak;Choi, Jeon;Seo, Chan-Yeol;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.4
    • /
    • pp.181-185
    • /
    • 1997
  • The electrochemical properties of the $AB_2$-type (Zr-Ti-V-Ni-Cr-Co-Mn) metal hydride electrodes prepared by ball milling with $AB_5-type\{(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}\}$(LM : Lanthanum-rich mischmetal) alloy powder as a surface activator were investigated. By ball milling with $AB_5$ type alloy powder, the activation of $AB_2$ type metal hydride electrode was accelerated resulting in an increase of discharge capacity from 35% to 85% of the maximum capacity at the first cycle. As the amount of surface activator increased the activation rate increased, whereas the discharge capacity increased with 10wt% and decreased with 20wt% addition of the surface activator. When the amount of the surface activator was kept constant as 10wt%, the discharge capacity and the activation rate increased with ball milling time up to 20 hours. However beyond 20 hours of ball milling time, they decreased drastically due to the nano-crystallization or amorphorzation of the alloy powder.

  • PDF

Electrical Conduction in Y2O3-doped SrZrO3-metal Electrode System (Y2O3가 도핑된 SrZrO3-금속전극계의 전기전도 특성)

  • Baek, Hyun-Deok;Lee, Poong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • Electrical conduction in $SrZr_{1-x}Y_xO_{3-\delta}$((x=0.05, 0.10)-metal electrode system was investigated by impedance spectroscopy and two-probe d.c. conductivity measurement. Electrode conductivity in anodic direction varies with $P_W^{1/2}$( and that in cathodic direction with $P_{O2}^{1/4}$ in oxidizing atmosphere. In hydrogen atmosphere, the addition of water vapor increased the electrode conductivity both in anodic and cathodic direction. Increasing dopant concentration from 5 to 10% showed a more than four times increase in anodic conduction as well as bulk conduction of the solid electrolyte. This observation implies that unfilled oxygen vacancy concentration increases rapidly as the dopant content increases in humid atmosphere. The activation energy of cathodic conduction in Pt and Ag electrode was nearly same below $800^{\circ}C$ which means the rate of cathodic reaction is determined by the reaction in the electrolyte surface rather than on the metal electrodes.

Introduction to Electrochemical Quartz Crystal Microbalance Technique for Leaching Study of Metals (금속 침출연구를 위한 전기화학적 미소수정진동자저울 기술 소개)

  • Kim, Min-seuk;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Electrochemical Quartz Crystal microbalance is a tool that is capable of measuring nanogram-scale mass change on electrode surface. When applying alternating voltage to the quartz crystal with metal electrode formed on both sides, a resonant frequency by inverse piezoelectric effect depends on its thickness. The resonant frequency changes sensitively by mass change on its electrode surface; frequency increase with metal dissolution and decrease with metal deposition on the electrode surface. The relationship between resonant frequency and mass change is shown by Sauerbrey equation so that the mass change during metal dissolution can be measured in real time. Especially, it is effective in the case of reaction mechanism and rate studies accompanied by precipitation, volatilization, compound formation, etc. resulting in difficulties on ex-situ AA or ICP analysis. However, it should be carefully considered during EQCM experiments that temperature, viscosity, and hydraulic pressure of solution, and stress and surface roughness can affect on the resonant frequency. Application of EQCM was shown as a case study on leaching of platinum using aqueous chlorine for obtaining activation energy. A platinum electrode of quartz crystal oscillator with 1000 Å thickness exposed to solution was used as leaching sample. Electrogenerated chlorine as oxidant was purged and its concentration was controlled in hydrochloric acid solution. From the experimental results, platinum dissolution by chlorine is chemical reaction control with activation energy of 83.5 kJ/mol.

Electrosorption Removal of the Zinc Ions from Aqueous Solution on an Artificial Electrode based in the Banana Wastes

  • Benakouche, Houda;Bounoughaz, Moussa
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.77-86
    • /
    • 2017
  • The valorization of domestic wastes becomes a very important research axis that can reduce the energy consumption and protect our environment. The objective of this study is to remove zinc ions from wastewater by using banana peels after their activation as sensor in the working electrode for an environmental application. Banana peels were dried, crushed and treated with sulfuric acid then mixed with polyaniline to improve their electrical conductivity. Cyclic voltammetry and chronoamperometry were used for electrochemistry tests. The obtained voltammogramms at well optimized conditions of applied potential of -1.3 V/SCE and initial zinc concentration of 0.2M during 2 hours of electrolysis, showed the reduction peak of the zinc at a potential of -1.14 V/SCE, which confirmed the activity of this electrode. The modeling of experimental data revealed that the adsorption was fitted by the Langmuir isotherm with a maximal adsorption capacity of 3.4188 mg/g. Changes in the structure of the powder after the electrosorption was noticed by SEM and EDX. Finally, the dosage of the electrolytic solution showed a diminution of the zinc concentration with yield of 99.99%.

Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries (Urea를 이용한 바나듐 레독스 흐름 전지용 카본 펠트 전극 개발)

  • Kim, So Yeon;Kim, Hansung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.408-412
    • /
    • 2019
  • In this study, nitrogen doped carbon felt was prepared by pyrolysis of urea at high temperature and applied as an electrode for vanadium redox flow cell. Urea is easier to handle than ammonia and forms $NH_2$ radicals at higher temperatures, creating a nitrogen functional group on the carbon surface and acting as an active site in the vanadium redox reaction. Therefore, the discharge capacity of activated carbon felt electrodes using urea was 14.9 Ah/L at a current density of $150mA/cm^2$, which is 23% and 187% higher than OGF and GF, respectively. These results show the possibility that activated carbon felt electrode using urea can be used as electrode material for redox flow battery.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.