Browse > Article
http://dx.doi.org/10.5695/JKISE.2010.43.1.025

Corrosion Behavior of Nanotube Formed on the Bone Plate of Ti-6Al-4V Alloy for Dental Use  

Kim, Won-Gi (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Lee, Chung-Hwan (Department of Prosthodontics, School of Dentistry, Chosun University)
Chung, Chae-Heon (Department of Prosthodontics, School of Dentistry, Chosun University)
Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
Publication Information
Journal of the Korean institute of surface engineering / v.43, no.1, 2010 , pp. 25-30 More about this Journal
Abstract
Titanium and titanium alloys are widely used for orthopedic and dental implants for their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. In this study, corrosion behaviors of nanotube formed on the bone plate of Ti-6Al-4V alloy for dental use have been investigated. $TiO_2$ nanotubes were formed on the dental bone plates by anodization in $H_3PO_4$ containing 0.6 wt % NaF solution at $25^{\circ}C$. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Anodization was carried out using a scanning potentiostat (EG&G Co, Model 263A USA), and all experiments were conducted at room temperature. The surface morphology was observed using field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The corrosion behavior of the dental bone plates was examined using potentiodynamic test(potential range of -1500~2000 mV) in a 0.9% NaCl solution by potentiostat (EG&G Co, PARSTAT 2273. USA). The inner diameter of nanotube was about 150~180 nm with wall thickness of about 20 nm. The interspace of nanotube to nanotube was 50 nm. The passive region of the nanotube formed bone plates showed the broad range compared to non-nanotube formed bone plates. The corrosion surface of sample was covered with corrosion products.
Keywords
Dental bone plate; Nanotube structure; Corrosion behavior; Anodization;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 W. G. Kim, H. C. Choe, Y. M. Ko, J. Kor. Phys. Soc., 3 (2009) 1036.
2 H. M. Jung, J. C. Shin, W. G. Kim, Y. H. Jeong, B. H. Kim, H. C. Choe, Y. M. Ko, J. Kor. Res. Soc. Dent. Mater., 35 (2008) 369.
3 Y. H. Jeong, H. C. Choe, Y. M. Ko, J. Kor. Inst. Surf. Eng., 41 (2008) 57.   과학기술학회마을   DOI
4 J. M. K. Sirotna, P. Schmuki. Electrochimica Acta, 50 (2005) 3679.   DOI
5 T. O. Paulo, N. Antonio, Biomaterials, 25 (2004) 403.   DOI
6 M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, T. L. Parker, Diamond and Related Materials, 8 (1999) 457.   DOI
7 W. G. Kim, H. C. Choe, Y. M. Ko, J. Kor. Inst. Surf. Eng., 41 (2008) 69.   과학기술학회마을   DOI   ScienceOn
8 J. W. Thomas, U. E. Jeremiah. Biomaterials, 25 (2004) 4731.   DOI
9 J. D. Bronzino, Biomedical Enginnering Handbook. 'CRC' Press (1995) 274.
10 J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed., 44 (2005) 2100.   DOI
11 V. S. Saji, H. C. Choe, W. A. Brantley, Acta Biomateirialia, 5 (2009) 2303.   DOI
12 T. O. Paulo, N. Antonio, Biomaterials, 25 (2004) 403.   DOI
13 P. P. Binon, D. Weir, L. Watanabe, L. Walker, Chicago, Quintessence, (1992).
14 J. W. Thomas, U. E. Jeremiah, Biomaterials, 25 (2004) 4731.   DOI
15 Y. U. Kim, J. Y. Cho, H. C. Choe, Corros. Sci. Tech., 8 (2009) 162.
16 R. Beranek, H. Hildebrand, P. Schmuki. Electrochemical Solid-State Letters, 6 (2003) B12.   DOI
17 S. H. Jang, H. C. Choe, Y. M. Ko, W. A. Brantley, Thin Solid Films, 517 (2009) 5038.   DOI
18 H. S. Kim, D. R. Min, K. K. Lee, K. M. Lee, S. W. Park, D. J. Lee, J. Kor. Res. Soc. Dent. Mater., 33 (2006) 163.
19 B. Yang, M. Uchida, H. M. Kim, X. Zhang, T. Kokubo, Biomaterials, 25 (2004) 1003.   DOI
20 V. S. Saji, H. C. Choe, Corros. Sci., 51 (2009) 1658.   DOI
21 H. S. Kim, K. M. Lee, D. J. Lee, S. W. Park, K. K. Lee, J. Kor. Mater. Res., 17 (2007) 6.   DOI
22 W. G. Kim, H. C. Choe, Y. M. Ko, W. A. Brantley, Thin Solid Films, 517 (2009) 5033.   DOI
23 T. H. Kim, G. H. Park, M. K. Son, W. G. Kim, S. H. Jang, H. C. Choe, J. Kor. Inst. Surf. Eng., 41 (2008) 226.   과학기술학회마을   DOI
24 V. S. Saji, Y. H. Jeong, H. C. Choe, Corros. Sci. Tech., 8 (2009) 139.
25 G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes. J. Mater. Res., 18 (2003) 2588.   DOI
26 D. M Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine, Springer (2001) 317.
27 H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, Electrochemistry Communications, 7 (2005) 576.   DOI
28 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Maer. Res., 16 (2001) 3331.   DOI   ScienceOn
29 A. F. Recum, Biomaterials, 9 (1990) 297.
30 H. C. Choe, Y. M. Ko, Materials Science Forum, 475-479 (2005) 2287.   DOI
31 Y. H. Jeong, K. Lee, H. C. Choe, Y. M. Ko, W. A. Brantley, Thin Solid Films, 517 (2009) 5365.   DOI
32 W. G. Kim, H. C. Choe, Y. M. Ko, W. A. Brantley, NSTI-Nanotech, 1 (2008) 462.
33 J. Zhoa, X. Wang, R. Chen, L. Li, Solid. State. Communication, 134 (2005) 705.   DOI
34 G. Gianluca, A. Luigi, A. B. Giovanni, C. Umberto, G. Rosalba, F. Milena, N. A. Nicolo, M. Lucia, R. Lia, G. Roberto, Biomaterials 25 (2004) 5583.   DOI
35 S. Kaneco, Y. Chen, P. Westerhoff, J. C. Crittenden, Scripta Materialia, 56 (2007) 373.   DOI