• Title/Summary/Keyword: electrochemical synthesis

Search Result 543, Processing Time 0.029 seconds

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh;Bonyadi, Sepideh
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

Electrochemical Performances of Spherical Silicon/Carbon Anode Materials Prepared by Hydrothermal Synthesis (수열 합성법으로 제조된 구형의 실리콘/탄소 음극소재의 전기화학적 특성)

  • Choi, Na Hyun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.326-332
    • /
    • 2021
  • In this study, a spherical carbon composite material containing nano-silicon was synthesized using hydrothermal synthesis, and coated with petroleum pitch to prepare an anode material to investigate the electrochemical characteristics. Hydrothermal synthesis was performed by varying molar concentration, and the pitch was coated using THF as an organic solvent to prepare a composite material. The physical properties of anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances were investigated by cycle, C-rate, cyclic voltammetry and electrochemical impedance tests in 1.0 M LiPF6 electrolyte (EC : DMC : EMC = 1 : 1 : 1 vol%). The pitch-coated silicon/carbon composite (Pitch@Si/C-1.5) with sucrose of 1.5 M showed a spherical shape. In addition, a high initial capacity of 1756 mAh/g, a capacity retention ratio of 82% after 50 cycles, and an excellent rate characteristic of 81% at 2 C/0.1 C were confirmed.

Electrochemical Template Synthesis of Conducting Polymer Microstructures at Addressed Positions (템플레이트의 국소 위치에 형성된 전도성 고분자 미세구조물의 전기화학 합성)

  • Lee Seung Hyoun;Suh Su-Jeong;Yun Geum-Hee;Son Yongkeun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • The nano or micro sized structures of conducting polymer had been prepared by synthesizing the desired polymer within the pores of template of nano or micro porous membrane filter. In this study, we had tried to fabricate conducting polymer microstructures on an electrode by using electrochemical deposition adopting template synthesis. Our attention was focused on two different things, attaching template on the electrode and fabricating microstructures only at limited areas of the electrode. A conducting polymer, PEDiTT (poly 3,4-ethylenedithi-athiophene) solution was blended with PVA(polyvinyl alcohol) solution and used as an conducting adhesive. After attaching template membrane, the electrode were immersed in 0.5M pyrrole in 0.1M KCI solution, and electrochemical polymerization was performed. The growth process of the microstructures studied by SEM. The electrochemical fabrication of conducting polymer was performed by using two-electrode system. A large working electrode and a micro scale disc electrode were used for the confined area synthesis. Polymerization potential was 4V in an electrolytic solution made of KCI in deionized water. The optimum polymerization conditions were, i.e. (4V/100sec) for $250{\mu}m$ electrode and (6V/30 sec) for $10{\mu}m$ electrode.

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery (초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Ji, Sung Hwa;Jo, Wan Taek;Kim, Hyun Hyo;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

Electrochemical Properties of Dye-sensitized Solar Cells Using the TiO2 Prepared by Hydrothermal Reaction (수열합성한 TiO2 분말을 이용한 염료감응형 태양전지의 전기화학적 특성)

  • Na, Byung-Hee;Zhao, Xing Guan;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • In this work, according to temperature and time of hydrothermal synthesis, the electrochemical properties of $TiO_2$ particle using TTIP based on changing temperature and time in the hydrothermal synthesis were analyzed and optimized temperature and time were derived. When hydrothermal synthesis temperature and time were $200^{\circ}C$ and 1 h, respectively. The fabricated DSSC delivered the best electrochemical properties. In that case, $TiO_2$ particle size was 13.08 nm, electron transport time was $2.34{\times}10^{-3}s$ and recombination time was $4.01{\times}10^{-2}s$. The lowest impedance of $13.52{\Omega}$ and Voc, Jsc, FF is 0.70 V, $1.50mAcm^{-2}$, 65.62%, respectively and corresponding efficiency of 5.34% was considered as the optimal.

A Study on the Electrochemical Behavior of Carbon Material with Compact Surface Using Impedance Spectroscopy (조밀한 표면조직을 갖는 탄소재료의 Impedance Spectroscopy를 통한 전기화학적 거동의 해석)

  • Oh, Han Jun;Lee, Jong Ho;Lee, Young Hoon;Ko, Young Shin
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 1996
  • The electrochemical behavior of glassy carbon and PVDF synthesis graphite materials with compact surface have been characterized by impedance spectroscopy. The Faraday-impedance both carbon materials were depended highly on polarization and the difference of electrochemical behavior accord to structure of surface between glassy carbon and synthesis graphite was represented, in these evaluated equivalent circuits, PVDF synthesis graphite was indicated with form that is added resistance and capacitance by the hydrophobic binder to glassy carbon equivalent circuit.

  • PDF

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.